Skip to main content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Additive manufacturing

Additive manufacturing fabricates parts by building them up layer-by-layer (as opposed to cutting material away or molding it). It shows great promise for applications as diverse as lightweight aerospace structures and custom biomedical implants.

Additive manufacturing is causing fundamental changes in the way parts are produced. Where typical manufacturing operates by cutting away or molding material, in additive manufacturing, digital designs guide the fabrication of complex, three-dimensional products that are built up, layer by layer.

As the field matures, transitioning what is now more of an art into a science will be critical for expanding its use by industry. This transition depends on measurements and ultimately, standards. Through its core missions of measurement science research and standards development, NIST is working with U.S. industry to lead these changes.

The Engineering Laboratory’s Measurement Science for Additive Manufacturing (MSAM) program is exploring barriers to adoption of additive manufacturing, such as surface quality, part accuracy, fabrication speed, material properties and computational requirements. To mitigate these challenges, the program focuses on material characterization, real-time control of additive manufacturing processes, qualification methodologies and system integration.

The Material Measurement Laboratory is investigating additive manufacturing-related issues for both metals and polymers. Projects underway include studying the fracture and fatigue properties of additive manufacturing materials, nano-mechanical properties of surfaces and flaws in these materials, modeling of microstructure evolution, and relationships between precursor material and final product quality.

The Physical Measurement Laboratory is studying emissive properties of materials in solid, powder, and liquid states, as well as improved techniques for real-time temperature measurements to support better understanding and modeling of additive manufacturing processes.

Rethinking Manufacturing

News and Updates

Publications