NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Zone-Refinement Effect in Small Molecule-Polymer Blend Semiconductors for Organic Thin Film Transistors
Published
Author(s)
Yeon Sook Chung, Nayool Shin, Jihoon Kang, Youngeun Jo, Vivek Prabhu, Regis J. Kline, John E. Anthony, Do Y. Yoon
Abstract
The blend films of small molecule semiconductors with insulating polymers exhibit not only an excellent solution processability, but also superior performance characteristics (field-effect mobility, on/off ratio, threshold voltage and stability) over those of neat small molecule semiconductors. To understand the underlying mechanism, we studied triethylsilylethynyl anthradithiophene (TESADT), as a model system for adding a small amount of impurity by weak ultraviolet (UV)light exposure that results in drastically reduced field-effect mobility (< 10-5 cm2/Vs) and a disappearance of the high-temperature crystal phase. However, the mobility of the blend films of the UV-exposed TESADT with poly(α-methylstyrene) (PαMS) is recovered to that of fresh TESADT-PαMS blend (0.040 cm2/Vs) and the phase transition characteristics return to those of fresh TESADT films. Moreover, these results are corroborated by the OTFT results on blend films of "aged" 6,13-bis(tri-isopropylsilylethynyl) pentacene (TIPS-pentacene) and PαMS. Coupled with the neutron reflectivity study on thin films of small molecule-polymer blends, they indicate that the formation of vertically separated zones of pure crystalline small molecule semiconductors at the gate interface allows the impurity species to remain preferentially in adjacent polymer-rich amorphous layer. Such "zone-refinement" effect would effectively remove not only the organic impurity but also ionic impurity charges, which are detrimental to the organic electronic devices such as organic thin film transistors and organic photovoltaic solar cells but are very difficult to remove completely from the solution-processable samples.
Chung, Y.
, Shin, N.
, Kang, J.
, Jo, Y.
, Prabhu, V.
, Kline, R.
, Anthony, J.
and Yoon, D.
(2010),
Zone-Refinement Effect in Small Molecule–Polymer Blend Semiconductors for Organic Thin Film Transistors, Journal of American Chemical Society, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=906520
(Accessed October 14, 2025)