NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
In Vitro Biocompatibility of Hydrolytically Degraded Poly(d,l-lactic acid)
Published
Author(s)
S Yoneda, William F. Guthrie, David S. Bright, C A. Khatri, Francis W. Wang
Abstract
n order to investigate the effects of hydrolytic degradation on the biocompatibility of poly(d,l-lactic acid) [P(d,l-LA)], the initial attachment of MC3T3-E1 osteoblast-like cells on various degraded P(d,l-LA) disks was assessed. MC3T3-E1 cells were seeded on P(d,l-LA) disks (10 mm in diameter and 1.65 mm in thickness) that had been degraded by immersion in a hydrolyzing medium for (0 to 4) weeks. The cell-spread area was measured with a fluorescence microscope after staining the plasma membrane with a fluorescent dye. The focal adhesions of the cells were also investigated by immunofluorescence staining of vinculin. The cell-spread area of the cells on P(d,l-LA) disks that were not degraded did not differ significantly from that of the cells on tissue-culture polystyrene, but the degradation of P(d,l-LA) disks affected cell spreading.The cell-spread area decreased linearly with the degradation time of the disks at a rate of (-741 307) mm2/week (all uncertainties quoted are expanded uncertainties at the 95% confidence level). Compared with the cells on non-degraded P(d,l-LA) disks, the cells on P(d,l-LA) disks that had been degraded for 4 weeks also showed irregular morphologies. Focal adhesions began to disappear for the cells on P(d,l-LA) disks degraded for one week. The number of the live cells [up to (2.099 0.268) cells/mm2 in log10 units, depending on the measurement location within the samples] on P(d,l-LA) disks also decreased linearly with the degradation time of the disks at a rate of up to (-0.175 0.064) (cells/mm2)/week in log10 units, again depending on the measurement location within the samples. The dehydrogenase activity, as measured by the WST-1 assay, also significantly decreased with the degradation time of the P(d,l-LA) disks
Yoneda, S.
, Guthrie, W.
, Bright, D.
, Khatri, C.
and Wang, F.
(2004),
In Vitro Biocompatibility of Hydrolytically Degraded Poly(d,l-lactic acid), World Biomaterials Congress, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=852261
(Accessed November 4, 2025)