NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Viscosity-ratio measurements with capillary viscometers
Published
Author(s)
Robert F. Berg, Eric F. May, Michael R. Moldover
Abstract
Viscosity-ratio measurements made with capillary viscometers exploit the accurate values of the viscosity of helium resulting from ab initio calculations. Accurate values of the argon-to-helium viscosity ratio are now used for primary acoustic thermometry and the most accurate redeterminations of the Boltzmann constant. Accurate viscosity ratio measurements enable the calibration of laminar flow meters with surrogate gases and their use with process gases. We review ratio viscometers that comprise one, two, and four capillaries. A single capillary is a ratio viscometer when it is used to measure multiple gases, while two- and four-capillary viscometers are inherently instruments intended for ratio measurements. We consider only gases and Newtonian liquids, with a focus on the two-capillary gas viscometer and its extension to pressures up to 100 MPa. A single-capillary viscometer could measure the ratio (viscosity of liquid water)/(viscosity of gaseous helium) thereby reducing the uncertainty of the liquid-viscosity scale relative to the international system of units.
Citation
Experimental Thermodynamics Volume IX: A, Advances in Transport Properties
Berg, R.
, May, E.
and Moldover, M.
(2014),
Viscosity-ratio measurements with capillary viscometers, Experimental Thermodynamics Volume IX: A, Advances in Transport Properties, Royal Society of Chemistry, Cambridge, -1, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=914155
(Accessed October 9, 2025)