NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Transport Effects on Multiple-Component Reactions in Optical Bionsensors
Published
Author(s)
Ryan M. Evans, David A. Edwards
Abstract
Many biochemical reactions involve a stream of chemical reactants (ligand molecules) flowing over a surface to which other reactants (receptors) are confined. Scientists measure rate constants associated with these reactions in an optical biosensor: an instrument in which ligand molecules are convected through a flow cell, over a surface to which receptors are immobilized. In applications such as DNA damage repair multiple simultaneous reactions occur on the surface of the biosensor. We quantify transport effects on such multiple-component reactions, which result in a nonlinear set of integrodifferential equations for the reacting species concentrations. In physically relevant parameter regimes, these integrodifferential equations further reduce to a nonlinear set of ordinary differential equations, which may be used to estimate rate constants from biosensor data. We verify our results with a semi-implicit finite difference algorithm.
Evans, R.
and Edwards, D.
(2017),
Transport Effects on Multiple-Component Reactions in Optical Bionsensors, Bulletin of Mathematical Biology, [online], https://doi.org/10.1007/s11538-017-0327-9
(Accessed October 9, 2025)