Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Thermal Performance of Fire Resistive Materials I. Characterization With Respect to Thermal Performance Models



Dale P. Bentz, Kuldeep R. Prasad


As integrated circuits become smaller and faster, the measurement of line width must have less uncertainty and more versatility. The common requirement for uncertainty is less than 10 nanometers. The industrial need for versatility is three dimensional scanning in order to measure the geometric shapes of walls and trenches. Atomic Force Microscopes (AFMs) are commonly used in laboratories for a range of critical measurements of dimensions demanded by the electronic industry. However, it is difficult to predict the measurement bias arising from the compliance of the AFM probe. The issue becomes particularly important in this situation: nanometer uncertainties need to be quantified when flexible carbon nanotubes, having diameters of 1 to 10 nm and mounted on AFM cantilevers, are used as high resolution probes. In order to estimate the probe deflections due to surface contact and the resulting dimensional biases and uncertainties, we have developed a finite element model for simulating the mechanical behavior of AFM cantilevers with carbon nanotubes attached. The finite element model was developed using the commercially available software systems. Spring constants of both the nanotube and cantilever in two directions are calculated using the finite element method with known Young s moduli of both silicon and multi-wall nanotube as input data. Compliance of the nanotube-attached AFM probe tip may be calculated from the set of spring constants. Both static models for contact scanning and dynamic models for tapping mode AFM are working and are being applied to estimate uncertainties in linewidth measurement using nanotubes. In particular, the interaction between a multi-wall nanotube tip and a silicon sample is modeled using the Lennard-Jones theory. Snap-in and snap-out of the probe tip in a scanning mode are calculated by integrating the compliance of the probe and the sample-tip interacting force model. Cantilever and probe tip deflections and points of contact are derived for both horizontal scanning of a plateau and vertically scanning of a wall. The finite element method and Lennard-Jones model provide a unique means to analyze the interaction of the probe and sample, including actual deflection and the gap between the probe tip and the measured sample surface.
NIST Interagency/Internal Report (NISTIR) - 7401
Report Number


building technology, density, enthalpy, fire resistive materials, heat capacity, thermal conductivity, thermal performance models


Bentz, D. and Prasad, K. (2007), Thermal Performance of Fire Resistive Materials I. Characterization With Respect to Thermal Performance Models, NIST Interagency/Internal Report (NISTIR), National Institute of Standards and Technology, Gaithersburg, MD, [online], (Accessed April 19, 2024)
Created February 14, 2007, Updated February 19, 2017