NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Techniques for microwave near-field quantum control of trapped ions
Published
Author(s)
Ulrich J. Warring, C. Ospelkaus, Yves Colombe, Kenton R. Brown, Jason Amini, M Carsjens, Dietrich G. Leibfried, David J. Wineland
Abstract
In Ospelkaus et al. [Nature 476, 181 (2011)] a microwave near-field quantum control of spin and motional degrees of freedom of one and two 25Mg+ ions enabled two-ion entanglement. In this report, we extend on the description of the experimental setup and calibration procedures for preparing these experiments. In particular, we discuss the design and characteristics of the surface-electrode trap and the microwave system that enabled the near-field control. We compare experimental findings of the microwave near-fields with numerical simulations. Moreover, we present a method utilizing oscillating-field gradients to compensate micromotion induced by the ponderomotive radio frequency potential in (linear) surface-electrode traps. Finally, we discuss the current limitations of the microwave-driven two-ion entangling gates.
Warring, U.
, Ospelkaus, C.
, Colombe, Y.
, Brown, K.
, Amini, J.
, Carsjens, M.
, Leibfried, D.
and Wineland, D.
(2013),
Techniques for microwave near-field quantum control of trapped ions, Physical Review A, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=912579
(Accessed October 6, 2025)