Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Task Analysis of Autonomous On-Road Driving

Published

Author(s)

Anthony J. Barbera, John A. Horst, Craig I. Schlenoff, David Aha

Abstract

The Real-time Control System (RCS) Methodology has evolved over a number of years as a technique to capture task knowledge and organize it into a framework conducive to implementation in computer control systems. The fundamental premise of this methodology is that the present state of the task activities sets the context that identifies the requirements for all of the support processing. In particular, the task context at any time determines what is to be sensed in the world, what world model states are to be evaluated, which situations are to be analyzed, what plans should be invoked, and which behavior generation knowledge is to be accessed.This methodology concentrates on the task behaviors explored through scenario examples to define a task decomposition tree that clearly represents the branching of tasks into layers of simpler and simpler subtask activities. There is a named branching condition/situation identified for every fork of this task tree. These become the input conditions of the if-then rules of the knowledge set that define how the task is to respond to input state changes. Detailed analysis of each branching condition/situation is used to identify dependent precursor world states and these, in turn, are further analyzed to identify all of the entities, objects, and attributes that have to be sensed to determine if any of these world states exist.This paper explores the use of this 4D/RCS methodology in some detail for the particular task of autonomous on-road driving, which work was funded under the Defense Advanced Research Project Agency (DARPA) Mobile Autonomous Robot Software (MA
Proceedings Title
Mobile Robots 2004 | 17th | Proceedings of SPIE--the International Society for Optical Engineering | SPIE
Volume
5609
Conference Dates
October 26-28, 2004
Conference Location
Undefined
Conference Title
Proceedings of SPIE--the International Society for Optical Engineering

Keywords

autonomous, driving, finite state machines, sensory processing, task analysis, task knowledge, world model

Citation

Barbera, A. , Horst, J. , Schlenoff, C. and Aha, D. (2004), Task Analysis of Autonomous On-Road Driving, Mobile Robots 2004 | 17th | Proceedings of SPIE--the International Society for Optical Engineering | SPIE, Undefined (Accessed December 13, 2024)

Issues

If you have any questions about this publication or are having problems accessing it, please contact reflib@nist.gov.

Created September 30, 2004, Updated October 12, 2021