NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Tailoring the High-K Gate Dielectric/Sillicon Interface for CMOS Applications
Published
Author(s)
Y S. Lin, R Puthenkovilakam, J P. Chang, C P. Bouldin, Igor Levin, Nhan Van Nguyen, Y Sun, P Pianetta, T Conard, W Vandervorst, V Venturo, S Selbrede
Abstract
The interfacial properties, thermal stabilities, and the electrical characteristics of ZrO2/ Si and ZrO2/SiO2/Si were investigated and the interfacial layer of as-deposited ZrO2 on silicon is likely to be ZrSixOy. The ZrO2/ZrSixOy/Si is stoichiometic, uniform, amorphous, and has an equivalent oxide thickness of difference} 1.3 nm and a dielectric constant of 20.5 with leakage current of 3.2 x 10-3 A/cm2 at 1.5V. the as-deposited ZrO2/ZrSixOy/Si film stack is thermally stable up to 880 C and its thermally stability improved to 925 C upon oxygen or ammonia annealing. After oxygen annealing, the interfacial layer showed a more SiO2 like character and the interfacial layer thickness increased by 1 nm. In addition, the overall dielectric constant was reduced to 15.7. For NH3 annealing, ZrO2 underwent nitridation and the interfacial layer thickness increased by 0.6 nm with the overall dielectric constant reduced to 12.9.
Lin, Y.
, Puthenkovilakam, R.
, Chang, J.
, Bouldin, C.
, Levin, I.
, Nguyen, N.
, Sun, Y.
, Pianetta, P.
, Conard, T.
, Vandervorst, W.
, Venturo, V.
and Selbrede, S.
(2021),
Tailoring the High-K Gate Dielectric/Sillicon Interface for CMOS Applications, Applied Physics
(Accessed October 9, 2025)