Skip to main content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Symmetry-broken dissipative exchange flows in thin-film ferromagnets with in-plane anisotropy with in-plane anisotropy

Published

Author(s)

Ezio E. Iacocca, Thomas J. Silva, Mark Hoefer

Abstract

Planar ferromagnetic channels have been shown to theoretically support a long-range ordered and coherently precessing state where the balance between local spin injection at one edge and damping along the channel establishes a dissipative exchange flow, sometimes referred to as a spin superfluid. However, realistic materials exhibit in-plane anisotropy, which breaks the axial symmetry assumed in current theoretical models. Here, we study dissipative exchange flows in a ferromagnet with in-plane anisotropy from a dispersive hydrodynamic perspective. Through the analysis of a boundary value problem for a damped sine-Gordon nist-equation, dissipative exchange flows in a ferromagnetic channel can be excited above a spin current threshold that depends on material parameters and the length of the channel. Symmetry-broken dissipative exchange flows display harmonic overtones that redshift the fundamental precessional frequency and lead to a reduced spin pumping efficiency when compared to their symmetric counterpart. Micromagnetic simulations are used to verify that the analytical results are qualitatively accurate, even in the presence of nonlocal dipole fields. Simulations also confirm that dissipative exchange flows can be driven by spin transfer torque in a finite-sized region. These results delineate the important material parameters that must be optimized for the excitation of dissipative exchange flows in realistic systems.
Citation
Physical Review B
Volume
96
Issue
13
Created October 31, 2017, Updated November 10, 2018