An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Supersonically Cooled Moleculear Ions in a Slit-Jet Discharge: High-Resolution Infrared Spectrscopy and Tunneling Dynamics of HD2O+
Published
Author(s)
Feng Dong, D Uy, S Davis, Mark Child, David Nesbitt
Abstract
Jet-cooled high-resolution infrared spectra of partially deuterated hydronium (HD2O+) in the O-H stretch region (v3 band) are obtained for the first time, exploiting the high ion densities, long absorption path lengths, and concentration modulation capabilities of the slit jet discharge spectrometer. Least-square analysis with a Watson asymmetric top Hamiltonian yields rovibrational constants and provides high level tests of ab initio molecular structure predictions. Transitions out of both lower (vd3O+) and upper (v3-O^-) tunneling levels are observed, as well as transitions across the tunneling gap (v3-O+). The v3-O+ transitions in HD2O+ acquire oscillator strength by loss of C3 symmetry, and permit both ground (27.0318(72) cm-1) and excited state (17.7612(54) cm^-1) tunneling splittings t be determined to spectroscopic precision from a single rovibrational band. The splittings and band origins calculated with recent high level ab initio 6D potential surface predictions for H3O^+ and isotopomers [Huang et al.,J. Chem.Phys. 118, 5431 (2003); Rajamaki et al., J. Chem. Phys. 118, 10929 (2003)] are in very encouraging agreement with the current experimental results.
Citation
Journal of Chemical Physics
Volume
122
Pub Type
Journals
Keywords
hydronium ion, IR spectroscopy, slit jet discharge, tunneling
Citation
Dong, F.
, Uy, D.
, Davis, S.
, Child, M.
and Nesbitt, D.
(2005),
Supersonically Cooled Moleculear Ions in a Slit-Jet Discharge: High-Resolution Infrared Spectrscopy and Tunneling Dynamics of HD<sub>2</sub>O+, Journal of Chemical Physics
(Accessed May 28, 2023)