An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Superconformal Bottom-Up Nickel Deposition in High Aspect Ratio Through Silicon Vias
Published
Author(s)
Daniel Josell, Thomas P. Moffat
Abstract
Abstract: This work demonstrates void-free nickel filling of 56 μm tall, annular Through Silicon Vias (TSVs) using a mechanism that couples suppression breakdown and surface topography to achieve controlled superconformal, void-free deposition. The chemistry, a Watts electrolyte containing a dilute suppressing additive, and processes are fully detailed. The impact of deposition potential and additive concentration on the filling of the patterned features is presented. Voltammetric measurements on planar substrates, including the impact of rotation rate and suppressor concentration on the rate of metal deposition and potential of suppression breakdown, are used to quantify the interplay between metal deposition and suppressor adsorption. The derived kinetics are then used to quantitatively predict the observed bottom-up filling in the TSVs using the S-shaped negative differential resistance (S-NDR) mechanism for superconformal deposition; the predictions capture the experimental observations. This work extends understanding and application of the additive-derived S-NDR mechanism developed with non-ferrous metals.
Citation
ECS Transactions
Pub Type
Journals
Keywords
Nickel, TSV, through silicon via, filling, superconformal, superfill
Josell, D.
and Moffat, T.
(2016),
Superconformal Bottom-Up Nickel Deposition in High Aspect Ratio Through Silicon Vias, ECS Transactions
(Accessed October 5, 2024)