NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Subcentimeter depth resolution using a single-photon counting time-of-flight laser ranging system at 1550 nm wavelength
Published
Author(s)
Ryan E. Warburton, Aongus McCarthy, Andrew M. Wallace, Sergio Hernandez-Marin, Robert Hadfield, Sae Woo Nam, Gerald S. Buller
Abstract
We demonstrate subcentimeter depth profiling at a stand off distance of 330 m using a time-of-flight approach based on time-correlated single-photon counting. For the first time to our knowledge, the photon-counting time-of-flight technique was demonstrated at a wavelength of 1550 nm using a superconducting nanowire single-photon detector. The performance achieved suggests that a system using superconducting detectors has the potential for low-light-level and eye-safe operation. The system's instrumental response was 70 ps full width at half-maximum, which meant that 1 cm surface-to-surface resolution could be achieved by locating the centroids of each return signal. A depth resolution of 4 mm was achieved by employing an optimized signal-processing algorithm based on a reversible jump Markov chain Monte Carlo method.
Warburton, R.
, McCarthy, A.
, Wallace, A.
, Hernandez-Marin, S.
, Hadfield, R.
, Nam, S.
and Buller, G.
(2007),
Subcentimeter depth resolution using a single-photon counting time-of-flight laser ranging system at 1550 nm wavelength, Optics Letters, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=32570
(Accessed October 22, 2025)