NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Structure-property relationships for methyl-terminated alkyl self-assembled monolayers
Published
Author(s)
Frank W. DelRio, Dave Rampulla, Cherno Jaye, Gheorghe Stan, Richard S. Gates, Daniel A. Fischer, Robert F. Cook
Abstract
Structure-property relationships for methyl-terminated alkyl self-assembled monolayers (SAMs) are developed using near-edge X-ray absorption fine structure spectroscopy (NEXAFS) and atomic force microscopy (AFM). NEXAFS C K-edge spectra are used to compute the dichroic ratio, which provides a quantitative measure of the molecular structure. AFM data are analyzed with an elastic adhesive contact model, modified by a first-order elastic perturbation method to include substrate effects, to extract the monolayer mechanical properties. Using this approach, the measured mechanical properties are not influenced by the substrate, which allows universal structure-property relationships to be developed for all methyl-terminated alkyl SAMs.
DelRio, F.
, Rampulla, D.
, Jaye, C.
, Stan, G.
, Gates, R.
, Fischer, D.
and Cook, R.
(2011),
Structure-property relationships for methyl-terminated alkyl self-assembled monolayers, Applied Physics Letters, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=908238
(Accessed October 9, 2025)