Skip to main content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Structure of the cell-binding component of the Clostridium difficile binary toxin reveals a di- heptamer macromolecular assembly

Published

Author(s)

Xingjian Xu, Raquel Ruiz, Kaylin Adipietro, Christopher Peralta, Danya Ben-Hail, Kristen Varney, Mary Cook, Braden Roth, Paul Wilder, Thomas E. Cleveland, Alexander V. Grishaev, Heather Neu, Sarah Michel, Wenbo Yu, Dorothy Beckett, Richard Rustandi, Alex MacKerell, Amedee des Georges, Edwin Pozharski, David Weber

Abstract

Targeting Clostridium difficile infection is challenging because treatment options are limited, and high recurrence rates are common. One reason for this is that hypervirulent C. difficile strains often have a binary toxin termed the C. difficile toxin, in addition to the enterotoxins TsdA and TsdB. The C. difficile toxin has an enzymatic component, termed CDTa, and a pore-forming or delivery subunit termed CDTb. CDTb was characterized here using a combination of single-particle cryoelectron microscopy, X-ray crystallography, NMR, and other biophysical methods. In the absence of CDTa, 2 di-heptamer structures for activated CDTb (1.0 MDa) were solved at atomic resolution, including a symmetric (SymCDTb; 3.14 Å) and an asymmetric form (AsymCDTb; 2.84 Å). Roles played by 2 receptor-binding domains of activated CDTb were of particular interest since the receptor-binding domain 1 lacks sequence homology to any other known toxin, and the receptor-binding domain 2 is completely absent in other well-studied heptameric toxins (i.e., anthrax). For AsymCDTb, a Ca2+ binding site was discovered in the first receptor-binding domain that is important for its stability, and the second receptor- binding domain was found to be critical for host cell toxicity and the di-heptamer fold for both forms of activated CDTb. Together, these studies represent a starting point for developing structure-based drug-design strategies to target the most severe strains of C. difficile.
Citation
Proceedings of the National Academy of Sciences of the United States of America
Volume
117
Issue
2

Keywords

Clostridium difficile, binary toxin, protein structure
Created January 14, 2020, Updated April 19, 2020