NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Structural Characterization of Membrane-Bound Human Immunodeficiency Virus-1 Gag Matrix with Neutron Reflectometry
Published
Author(s)
Rebecca Eells, Marilia Barros, Kerry M. Scott, Ioannis Karageorgos, Frank Heinrich, Mathias Loesche
Abstract
The structural characterization of peripheral membrane proteins represents a tremendous challenge in structural biology due to their transient interaction with the membrane and the potential multitude of protein conformations during this interaction. Neutron reflectometry is uniquely suited to address this problem, because of its ability to structurally characterize biological model systems non-destructively and under biomimetic conditions that retain full protein model systems non-destructively and under biomimetic conditions that retain full protein functionality. Being sensitive to only the membrane-bound fraction of a water-soluble peripheral protein, neutron reflectometry obtains a low-resolution average structure of the protein-membrane complex that is further refined using integrative modeling strategies. Here we review the current technological state of biological neutron reflectometry exemplified by a detailed report on the structure determination of myristoylated HIV-1 Gag matrix associated with phosphoserine-containing model membranes. We found that HIV-2 Gag matrix is able to adopt different configurations at the membrane in a pH-dependent manner and that the myristate group orients the protein in a way that is a conducive to PIP2-binding.
Eells, R.
, Barros, M.
, Scott, K.
, Karageorgos, I.
, Heinrich, F.
and Loesche, M.
(2017),
Structural Characterization of Membrane-Bound Human Immunodeficiency Virus-1 Gag Matrix with Neutron Reflectometry, Biointerphases, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=923113
(Accessed October 8, 2025)