NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Standard Photoacoustic Spectrometer: Model and Validation using O2 A-Band Spectra
Published
Author(s)
Keith A. Gillis, Daniel K. Havey, Joseph T. Hodges
Abstract
We model and measure the absolute response of an intensity-modulated photoacoustic spectrometer comprising a 10 cm long resonator and having a Q-factor of approximately 30. We present a detailed theoretical analysis of the system and predict its response as a function of gas properties, resonance frequency, and sample energy transfer relaxation rates. We use a low-power continuous wave laser to probe O2 A-band absorption transitions using atmospheric, humidified air as the sample gas to calibrate the system. This approach provides a convenient and well-characterized method for calibrating the absolute response of the system provided that water-vapor-mediated relaxation effects are properly taken into account. We show that for photoacoustic spectroscopy (PAS) of the O2 A-band, the maximum conversion efficiency of absorbed photon energy to acoustic energy is approximately 40% and is limited by finite collision-induced relaxation rates between the two lowest-lying excited electronic states of O2. The technique also shows great potential for high-resolution line shape measurements. We directly compare calculated and experimental values for the PAS system response and show that they differ by about 1%.
Gillis, K.
, Havey, D.
and Hodges, J.
(2010),
Standard Photoacoustic Spectrometer: Model and Validation using O2 A-Band Spectra, Review of Scientific Instruments, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=904841
(Accessed October 4, 2025)