NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Stable Single-Crystalline Body Centered Cubic Fe Nanoparticles
Published
Author(s)
Natalie F. Huls, Lise-Marie Lacroix, Don Ho, Xiaolian Sun, Shouheng Sun
Abstract
Air stable magnetic nanoparticles (MNPs) with high magnetization are required in order to fully realize optimized biomedical agents. However, only metallic NPs with good crystallinity such as Fe or FeCo, exhibit magnetization as high as 220 A.m.kg. Their synthesis and further stabilization are very challenging tasks which have been partially achieved by multiple steps processes. The synthesis of the crystalline core, based on high temperature thermodecomposition, an annealing step, or reduction under H_{2}, has to be followed by a secondary shell growth consisting of carbon, oxides or noble metal. Here, we report the first direct preparation of air stable single crystalline bcc Fe MNPs by thermodecomposition under mild conditions. These highly crystalline Fe MNPs are embedded in a native iron oxide shell which stabilizes them against further oxidation. These crystalline Fe/Fe_{3}O_{4} MNPs can be easily stabilized in acqueous media and present magnetic properties suitable for magnetic resonant imaging (MRI) and magnetic field hyperthermia (MFH) applications.
Huls, N.
, Lacroix, L.
, Ho, D.
, Sun, X.
and Sun, S.
(2011),
Stable Single-Crystalline Body Centered Cubic Fe Nanoparticles, Nano Letters, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=906858
(Accessed October 17, 2025)