NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Speed of Sound Measurements of Binary Mixtures of Difluoromethane (R-32) with 2,3,3,3-Tetrafluoropropene (R-1234yf) or trans-1,3,3,3-Tetrafluoropropene (R-1234ze(E)) Refrigerants
Published
Author(s)
Aaron Rowane, Richard A. Perkins
Abstract
Sound speed data measured using a dual-path pulse-echo instrument are reported for binary mixtures of difluoromethane (R-32) with 2,3,3,3-tetrafluoropropene (R-1234yf) or trans-1,3,3,3-tetrafluoropropene (R-1234ze(E)). The sound speed is reported at two compositions for each binary mixture of approximately (0.33/67) and (0.67/0.33) mole fraction at temperatures between 230 K and 345 K. Data are reported from pressures slightly above the bubble point to 12 MPa for R-32/1234yf mixtures to avoid potential polymerization reactions and to 53 MPa for the R-32/1234ze(E) mixtures. The mean uncertainty of the sound speed data are less than 0.1% of the measured value where uncertainties at individual state points range from 0.04% to 0.5% of the measured value as the conditions approach the mixture critical region. The reported data are compared to available Helmholtz-energy-explicit EOS included in REFPROP and all systems studied have average absolute deviations greater than 2%. The comparisons show that further adjustments to the mixture models are needed to provide a reasonable representation of the data within its experimental uncertainty.
Rowane, A.
and Perkins, R.
(2022),
Speed of Sound Measurements of Binary Mixtures of Difluoromethane (R-32) with 2,3,3,3-Tetrafluoropropene (R-1234yf) or trans-1,3,3,3-Tetrafluoropropene (R-1234ze(E)) Refrigerants, International Journal of Thermophysics, [online], https://doi.org/10.1007/s10765-021-02966-y, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=933315
(Accessed October 9, 2025)