NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
SPATIAL-TEMPORAL MODELING USING DEEP LEARNING FOR REAL-TIME MONITORING OF ADDITIVE MANUFACTURING
Published
Author(s)
Jaehyuk Kim, Yan Lu, Zhuo Yang, Hyunwoong Ko, Dongmin Shin, Yosep Oh
Abstract
Real-time monitoring for Additive Manufacturing (AM) processes can greatly benefit from spatial-temporal modeling using deep learning. However, existing, deep-learning approaches in AM are case-dependent, and therefore not robust to changes of control inputs and data types. As AM is dynamic and complex, this limitation leads to a lack of systematic, DL approaches for real-time monitoring of AM, which involves a large number of varying control parameters and monitoring data. To address the challenge, this paper introduces a novel approach for developing spatial-temporal models to monitor Laser Powder Bed Fusion (LPBF) processes using deep learning on real-time, monitoring data. First, we present a novel model for representing in-situ-monitoring and control data of LPBF at multiple scales. Second, from the model, we extract spatial-temporal relationships for in-situ monitoring of LPBF processes. Third, we present a spatial-temporal, modeling approach using the architecture of convolutional long short-term memory (LSTM) to monitor the spatial-temporal relationships and detect anomalies. A case study used convolutional LSTM Autoencoder on optical, melt-pool-monitoring data, one of the most widely adopted data types in in-situ monitoring of LPBF. The data was generated from a LPBF testbed called the Additive Manufacturing Metrology Testbed. The novel, learning approach enables spatial-temporal modeling of AM dynamics directly from real-time data for the monitoring of varying AM environments. The non-ad-hocness of the approach provides potential to fuse real-time data at multiple, spatial-temporal scales.
Proceedings Title
Proceedings of the ASME 2022
Conference Dates
August 14-17, 2022
Conference Location
St. Louis, MO, US
Conference Title
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE2022)
Kim, J.
, Lu, Y.
, Yang, Z.
, Ko, H.
, Shin, D.
and Oh, Y.
(2022),
SPATIAL-TEMPORAL MODELING USING DEEP LEARNING FOR REAL-TIME MONITORING OF ADDITIVE MANUFACTURING, Proceedings of the ASME 2022, St. Louis, MO, US, [online], https://doi.org/10.1115/DETC2022-91021, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=934817
(Accessed October 14, 2025)