Skip to main content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

In-source collision induced dissociation of inorganic explosives for mass spectrometric signature detection and chemical imaging



Thomas P. Forbes, Edward R. Sisco


In-source collision induced dissociation (CID) coupled with laser desorption/ionization mass spectrometry (LDI-MS) demonstrated the trace detection, bulk quantification, and chemical imaging of inorganic explosives and components. The incorporation of in-source CID provided direct control over the extent of adduct and cluster fragmentation as well as organic noise reduction for the enhanced detection of both the elemental and molecular ion signatures of fuel-oxidizer mixtures and other inorganic components of explosive devices. Investigation of oxidizer molecular anions, specifically, nitrates, chlorates, and perchlorates, identified optimal in-source CID at the transition between fragmentation of the ionic salt bonds and molecular anion bonds. The chemical imaging of oxidizer particles from latent fingerprints was demonstrated, including both cation and anion components in positive and negative mode mass spectrometry, respectively. This investigation demonstrated a versatile tool for security fields, as well as environmental monitoring and nuclear safeguards, facilitating the detection of elemental and molecular inorganic compounds at nanogram levels.
Analytica Chimica ACTA


In-source collision induced dissociation, fuel-oxidizer mixtures, inorganic detection, homemade explosives, mass spectrometry, laser desorption/ionization.
Created September 23, 2015, Updated November 10, 2018