Skip to main content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Single laser pulse effects on suspended-Au-nanoparticle size distributions and morphology



Richard E. Cavicchi, Douglas C. Meier, Cary Presser, Suvajyoti S. Guha


Samples of suspended gold nanoparticles in the diameter range 10 nm to 100 nm were subjected to a single 7 ns pulse from a 532 nm laser to determine the effects of laser power on particle size distribution, mean size, and morphology. The experimental techniques used were dynamic light scattering (DLS), electrospray-dynamic mass analysis (ES-DMA) which provides particle size distributions, ultraviolet-visible absorption spectroscopy (UV-VIS), and transmission electron microscopy (TEM). For 60 nm particles, a laser pulse of 10 mJ/cm2 was sufficient to produce observable changes. In the range 10 mJ/cm2 – 72 mJ/cm2 DLS indicated very little change in mean particle size, but a more than threefold reduction in the polydispersity index (significantly tightened distribution) and a decrease in scattering intensity. TEM showed that the particles became highly spherical and that there was a growing population of particles
Journal of Physical Chemistry C


nanoparticles, gold, laser ablation, transmission electron microscopy, dynamic light scattering, differential mobility analysis, ultraviolet-visible absorption spectroscopy
Created April 30, 2013, Updated February 19, 2017