Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Simulation of Methanol Combustion in the NIST Reference Spray Combustor

Published

Author(s)

D S. Crocker, M G. Giridharan, J F. Widmann, Cary Presser

Abstract

This paper describes the simulation of methanol spray flame in the NIST reference spray combustion facility, which was predicited using a state-of-the-art, unstructured-mesh CFD code. The code solves the gas-phase equations in an Eulerian frame using the finite-volume approach while the droplet equations are solved in a Lagrangian frame. This paper is focuses on the sensitivity to the predicited flame structure to the model boundary conditions, to ensure matching of the simulation to the experimental conditions. The combustor uses a simplex pressure-jet atomizer to produce a hollow-cone spray with a cone angle of 60 . The overall equivalence ratio of the baseline operating condition is 0.29. The spray initial conditions are specified from the measurement data obtained close to the atomizer. For this case, several simulations were performed with different initial and boundary conditions. The parameters that were varied from the baseline case included the air swirl velocity, equivalence ratio, spray droplet size distribution, and a pre-exponential kinetic constant. The results indicate that the existence of a central recirculation zone is sensitive to the location and rate of heat release. The predicted flame structure appears to be in reasonable agreement with NIST flame visualization. The fuel conversion is predicited to be 100 % whereas the data indicates a conversion of 80 %. This discrepancy is attributed to the uncertainty in spray initial conditions, especially for the droplet size distribution.
Proceedings Title
Combustion, Fire, and Computation in the NIST Reference Spray Combustor, Session | | | American Society of Mechanical Engineers (ASME)
Volume
367
Conference Dates
November 5-10, 2000
Conference Location
Undefined
Conference Title
ASME Conference

Keywords

computational fluid dynamics, model validation, multiphase reacting flows, simulation of industrial combustors, spray combustion modeling, unstructured-mesh code

Citation

Crocker, D. , Giridharan, M. , Widmann, J. and Presser, C. (2000), Simulation of Methanol Combustion in the NIST Reference Spray Combustor, Combustion, Fire, and Computation in the NIST Reference Spray Combustor, Session | | | American Society of Mechanical Engineers (ASME), Undefined (Accessed April 25, 2024)
Created October 31, 2000, Updated October 12, 2021