Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: William Borders (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 1 - 3 of 3

Programmable electrical coupling between stochastic magnetic tunnel junctions

March 29, 2024
Author(s)
Sidra Gibeault, Temitayo Adeyeye, Liam Pocher, Daniel Lathrop, Matthew Daniels, Mark Stiles, Jabez J. McClelland, William Borders, Jason Ryan, Philippe Talatchian, Ursula Ebels, Advait Madhavan
Superparamagnetic tunnel junctions (SMTJs) are promising sources of randomness for compact and energy efficient implementations of various probabilistic computing techniques. When augmented with electronic circuits, the random telegraph fluctuations of the

Neural networks three ways: unlocking novel computing schemes using magnetic tunnel junction stochasticity

September 28, 2023
Author(s)
Matthew Daniels, William Borders, Nitin Prasad, Advait Madhavan, Sidra Gibeault, Temitayo Adeyeye, Liam Pocher, Lei Wan, Michael Tran, Jordan Katine, Daniel Lathrop, Brian Hoskins, Tiffany Santos, Patrick Braganca, Mark Stiles, Jabez J. McClelland
Due to their interesting physical properties, myriad operational regimes, small size, and industrial fabrication maturity, magnetic tunnel junctions are uniquely suited for unlocking novel computing schemes for in-hardware neuromorphic computing. In this

Magnetic tunnel junction-based crossbars: improving neural network performance by reducing the impact of non-idealities

July 13, 2023
Author(s)
William Borders, Nitin Prasad, Brian Hoskins, Advait Madhavan, Matthew Daniels, Vasileia Gerogiou, Tiffany Santos, Patrick Braganca, Mark Stiles, Jabez J. McClelland
Increasingly higher demand in chip area and power consumption for more sophisticated artificial neural networks has catalyzed efforts to develop architectures, circuits, and devices that perform like the human brain. However, many novel device technologies