Skip to main content

NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.

Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.

U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by:

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 1 - 3 of 3

Fabrication and characterization of low-loss Al/Si/Al parallel plate capacitors for superconducting quantum information applications

January 22, 2025
Author(s)
Raymond Simmonds, Sudhir Sahu, Trevyn Larson, Florent Lecocq, Tongyu Zhao, Anthony McFadden
The application of parallel plate capacitors composed of aluminum-contacted, crystalline silicon fins for use in superconducting circuits is explored by evaluating the performance of superconducting lumped element resonators and transmon qubits. High

Cryogenic microwave loss in epitaxial Al/GaAs/Al trilayers for superconducting circuits

January 14, 2021
Author(s)
Corey Rae McRae, A. McFadden, Ruichen Zhao, Haozhi Wang, Junling Long, Tongyu Zhao, Sungoh Park, Mustafa Bal, Christopher J. Palmstrom, David P. Pappas
Epitaxially grown superconductor/dielectric/superconductor trilayers have the potential to form high-performance superconducting quantum devices and may even allow scalable superconducting quantum computing with low-surface-area qubits such as the merged

Overlap junctions for superconducting quantum electronics and amplifiers

May 25, 2020
Author(s)
Mustafa Bal, Junling Long, Ruichen Zhao, Haozhi Wang, Sungoh Park, Corey Rae H. McRae, Tongyu Zhao, Russell Lake, Daniil Frolov, Roman Pilipenko, Silvia Zorzetti, Alexander Romanenko, David P. Pappas
Due to their unique properties as lossless, nonlinear circuit elements, Josephson junctions lie at the heart of superconducting quantum information processing. Previously, we demonstrated a two-layer, submicrometer-scale overlap junction fabrication
Was this page helpful?