Skip to main content

NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.

Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.

U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Carina Hahn (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 1 - 7 of 7

Who Is That? Perceptual Expertise on Other-Race Face Comparisons, Disguised Face Comparisons, and Face Memory

April 20, 2023
Author(s)
Amy Yates, Jacqueline Cavazos, Geraldine Jeckeln, Ying Hu, Eilidh Noyes, Carina Hahn, Alice O'Toole, P. Jonathon Phillips
Forensic facial specialists identify faces more accurately than untrained participants on tests using high quality images of faces. Whether this superiority holds in more challenging conditions is not known. Here, we measured performance for forensic

NIST Explainable AI Workshop Summary

August 25, 2022
Author(s)
P. Jonathon Phillips, Carina Hahn, Peter Fontana, Amy Yates, Matthew Smith
This report represents a summary of the National Institute of Standards and Technology (NIST) Explainable Artificial Intelligence (AI) Workshop, which NIST held virtually on January 26-28, 2021.

Four Principles of Explainable Artificial Intelligence (Draft)

August 18, 2020
Author(s)
P Phillips, Carina Hahn, Peter Fontana, David A. Broniatowski, Mark A. Przybocki
We introduce four principles for explainable artificial intelligence (AI) that comprise the fundamental properties for explainable AI systems. They were developed to encompass the multidisciplinary nature of explainable AI, including the fields of computer
Was this page helpful?