Skip to main content

NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.

Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.

U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by:

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 1 - 2 of 2

Generative Adversarial Network Performance in Low-Dimensional Settings

April 20, 2021
Author(s)
Felix M. Jimenez, Amanda Koepke, Mary Gregg, Michael R. Frey
A generative adversarial network (GAN) is an artificial neural network with a distinctive training architecture, designed to create examples that faithfully reproduce a target distribution. GANs have recently had particular success in applications
Was this page helpful?