Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Publications

Search Publications by

Matthew Daniels (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 1 - 11 of 11

Easy-plane spin Hall nano-oscillators as spiking neurons for neuromorphic computing

January 10, 2022
Author(s)
Danijela Markovic, Matthew Daniels, Pankaj Sethi, Andrew Kent, Mark D. Stiles, Julie Grollier
We show analytically using a macrospin approximation that easy-plane spin Hall nano-oscillators excited by a spin-current polarized perpendicularly to the easy-plane have phase dynamics analogous to that of Josephson junctions. This allows them to

Mutual control of stochastic switching for two electrically coupled superparamagnetic tunnel junctions

August 19, 2021
Author(s)
Philippe Talatchian, Matthew Daniels, Advait Madhavan, Matthew Pufall, Emilie Jue, William Rippard, Jabez J. McClelland, Mark D. Stiles
Superparamagnetic tunnel junctions (SMTJs) are promising sources for the randomness required by some compact and energy-efficient computing schemes. Coupling them gives rise to collective behavior that could be useful for cognitive computing. We use a

A System for Validating Resistive Neural Network Prototypes

July 27, 2021
Author(s)
Brian Hoskins, Mitchell Fream, Matthew Daniels, Jonathan Goodwill, Advait Madhavan, Jabez J. McClelland, Osama Yousuf, Gina C. Adam, Wen Ma, Muqing Liu, Rasmus Madsen, Martin Lueker-Boden
Building prototypes of heterogeneous hardware systems based on emerging electronic, magnetic, and photonic devices is an increasingly important area of research. On the face of it, the novel implementation of these systems, especially for online learning

Temporal Memory with Magnetic Racetracks

December 1, 2020
Author(s)
Hamed Vakili, Mohammed N. Sakib, Samiran Ganguly, Mircea Stan, Matthew Daniels, Advait Madhavan, Mark D. Stiles, Avik W. Ghosh
Race logic is a relative timing code that represents information in a wavefront of digital edges on a set of wires in order to accelerate dynamic programming and machine learning algorithms. Skyrmions, bubbles, and domain walls are mobile magnetic

Streaming Batch Gradient Tracking for Neural Network Training

April 3, 2020
Author(s)
Siyuan Huang, Brian D. Hoskins, Matthew W. Daniels, Mark D. Stiles, Gina C. Adam
Faster and more energy efficient hardware accelerators are critical for machine learning on very large datasets. The energy cost of performing vector-matrix multiplication and repeatedly moving neural network models in and out of memory motivates a search

Energy-efficient stochastic computing with superparamagnetic tunnel junctions

March 5, 2020
Author(s)
Matthew W. Daniels, Advait Madhavan, Philippe Talatchian, Alice Mizrahi, Mark D. Stiles
Stochastic computing has been limited by the inaccuracies introduced by correlations between the pseudorandom bitstreams used in the calculation. We hybridize a stochastic version of magnetic tunnel junctions with basic CMOS logic gates to create a

Streaming Batch Eigenupdates for Hardware Neural Networks

August 6, 2019
Author(s)
Brian D. Hoskins, Matthew W. Daniels, Siyuan Huang, Advait Madhavan, Gina C. Adam, Nikolai B. Zhitenev, Jabez J. McClelland, Mark D. Stiles
Neuromorphic networks based on nanodevices, such as metal oxide memristors, phase change memories, and flash memory cells, have generated considerable interest for their increased energy efficiency and density in comparison to graphics processing units