Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by:

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 26 - 32 of 32

Superconducting optoelectronic networks II: receiver circuits

April 6, 2018
Author(s)
Jeffrey M. Shainline, Sonia M. Buckley, Adam N. McCaughan, Manuel C. Castellanos Beltran, Christine A. Donnelly, Michael L. Schneider, Richard P. Mirin, Sae Woo Nam
Circuits using superconducting single-photon detectors and Josephson junctions to perform signal reception, synaptic weighting, and integration are investigated. The circuits convert photon-detection events into flux quanta, the number of which is

Ultralow power artificial synapses using nanotextured magnetic Josephson junctions

January 28, 2018
Author(s)
Michael L. Schneider, Christine A. Donnelly, Stephen E. Russek, Burm Baek, Matthew R. Pufall, Peter F. Hopkins, Paul D. Dresselhaus, Samuel P. Benz, William H. Rippard
Neuromorphic computing is a promising avenue to dramatically improve the efficiency of certain computational tasks, such as perception and decision making. Neuromorphic systems are currently being developed for critical applications ranging from self

Scalable, High-Speed, Digital Single-Flux-Quantum Circuits at NIST

June 11, 2017
Author(s)
Pete Hopkins, Manuel Castellanos Beltran, Christine A. Donnelly, Paul Dresselhaus, David Olaya, Adam Sirois, Samuel P. Benz
We describe NIST's capabilities for designing and fabricating niobium-based single-flux quantum (SFQ) digital and mixed-signal circuits and show test results of our first circuits. We have assembled a package of software design tools that are readily

Stochastic Single Flux Quantum Neuromorphic Computing using Magnetically Tunable Josephson Junctions

October 16, 2016
Author(s)
Stephen E. Russek, Christine A. Donnelly, Michael Schneider, Burm Baek, Matthew Pufall, William Rippard, Pete Hopkins, Paul Dresselhaus, Samuel P. Benz
Abstract— Single flux quantum (SFQ) circuits form a natural neuromorphic technology with SFQ pulses and superconducting transmission lines simulating action potentials and axons, respectively. Here we present a new component, magnetic Josephson junctions
Was this page helpful?