Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Vipin Tondare (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 1 - 12 of 12

Powder Spreading Testbed for Studying the Powder Spreading Process in Powder Bed Fusion Machines

November 29, 2023
Author(s)
Justin Whiting, Eric Whitenton, Aniruddha Das, Vipin Tondare, Jason Fox, Michael McGlauflin, Alkan Donmez, Shawn P. Moylan
The spreading of powder is an integral part of powder bed fusion-based additive manufacturing technologies; however, due to the complex nature and the number of interactions between particles, studying the powder spreading process is difficult. In order to

A Comparison of Particle Size Distribution and Morphology Data acquired using Lab-based and Commercially Available Techniques: Application to Stainless Steel Powder

November 17, 2021
Author(s)
Justin Whiting, Edward Garboczi, Vipin Tondare, John Henry J. Scott, Alkan Donmez, Shawn P. Moylan
The particle size distribution (PSD) and particlemorphology ofmetal powders undoubtedly affects the quality of parts produced by additivemanufacturing (AM). It is, therefore, crucial to accurately knowthe PSD and morphology of these powders. There exist

A Prototype of a Standard Spreadability Tester for Additive Manufacturing

June 23, 2021
Author(s)
Justin G. Whiting, Vipin Tondare, Shawn P. Moylan, Alkan Donmez
We describe a simple device called Standard Spreadability Tester (SST). The idea behind the SST is that instead of trying to predict how a powder will spread using the powder's intrinsic properties (e.g., PSD, morphology, surface, and chemical makeup) or

Comparative study of multiwall carbon nanotube nanocomposites by Raman, SEM, and XPS measurement techniques

March 3, 2021
Author(s)
Yanmei Piao, Vipin Tondare, Chelsea S. Davis, Justin Gorham, Elijah Petersen, Jeffrey W. Gilman, Keana Scott, Andras Vladar, Angela R. Hight Walker
Substantial ongoing research efforts are investigating the production of novel composite material enhanced by the incorporation of nanomaterial fillers such as multiwall carbon nanotubes (MWCNTs). While the addition of MWCNTs have been shown to improve the

The effects of particle size distribution on the rheological properties of the powder and the mechanical properties of additively manufactured 17-4 PH stainless steel

January 14, 2021
Author(s)
Jordan S. Weaver, Justin G. Whiting, Vipin Tondare, Carlos R. Beauchamp, Max A. Peltz, Jared B. Tarr, Thien Q. Phan, Mehmet Donmez
It is well known that changes in the starting powder can have a significant impact on the laser powder bed fusion process and subsequent part performance. Relationships between the powder particle size distribution and powder performance such as

Uncertainty of particle size measurements using dynamic image analysis

May 14, 2019
Author(s)

Justin G. Whiting, Vipin N. Tondare, John H. Scott, Thien Q. Phan, M A. Donmez

Metal powder particle size and size distribution (PSD) are critical factors affecting powder layer density and uniformity in additive manufacturing processes. Among various existing measurement methods, dynamic image analysis (DIA) instruments are very

3D Nanometrology Based on SEM Stereophotogrammetry

September 18, 2017
Author(s)
Vipin N. Tondare, John S. Villarrubia, Andras Vladar
Three-dimensional (3D) reconstruction of a sample surface from scanning electron microscope (SEM) images taken at two perspectives has been known for decades. However, this method has not been widely used in the semiconductor industry for 3D measurements

Virtual rough samples to test 3D nanometer-scale SEM stereo photogrammetry

March 22, 2016
Author(s)
John S. Villarrubia, Vipin N. Tondare, Andras Vladar
The combination of SEM for high spatial resolution, images from multiple angles to provide 3D information, and commercially available stereo photogrammetry software for 3D reconstruction offers promise for dimensional metrology in 3D. A method is described