Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Shannon Hoogerheide (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 1 - 8 of 8

Progress on the BL2 beam measurement of the neutron lifetime

April 17, 2021
Author(s)
Shannon M. Hoogerheide, Jimmy P. Caylor, Evan R. Adamek, Eamon S. Anderson, Ripan Biswas, B. E. Crawford, Christina DeAngelis, Maynard S. Dewey, N Fomin, David M. Gilliam, Kyle Grammer, G L. Greene, Robert W. Haun, Jonathan Mulholland, Hans Pieter Mumm, Jeffrey S. Nico, William M. Snow, F E. Wietfeldt, Andrew Yue
A precise value of the neutron lifetime is important in several areas of physics, including determinations of the quark-mixing matrix element |Vud|, related tests of the Standard Model, and predictions of light element abundances in Big Bang

Neutron Spin Rotation Measurements

April 15, 2021
Author(s)
Jeffrey S. Nico, Shannon Hoogerheide, Hans Pieter Mumm, Murad Sarsour, J Amadio, Eamon Anderson, Libertad Barron-Palos, Bret Crawford, Chris Crawford, D. Esposito, Walter Fox, I Francis, J Fry, Chris Haddock, Adam Holley, Kirill Korsak, J Lieers, S Magers, M. Maldonado-Velazquez, D Mayorov, T Okudaira, C Paudel, S Santra, H.M. Shimizu, William M. Snow, A. Sprow, K. Steen, H E. Swanson, John Vanderwerp, P. A. Yergeau
The neutron spin rotation (NSR) collaboration used parity-violating spin rotation of transversely polarized neutrons transmitted through a 0.5 m liquid helium target to constrain weak coupling constants between nucleons. While consistent with theoretical

Capture of Highly Charged Ions in a Pseudo-Hyperbolic Paul Trap

July 12, 2019
Author(s)
Joan M. Dreiling, Aung S. Naing, Joseph N. Tan, Joshua Hanson, Shannon Hoogerheide, Samuel M. Brewer
The confinement of ions in a radio-frequency (RF) trap (also known as a Paul trap) has proven to be advantageous in many applications. Typically, singly- or few-times-ionized atoms can be created in situ within the ion trap. Highly charged ions, on the

Lifetime of the metastable 2 P 1/2 state of F-like Ar 9+ isolated in a compact Penning trap

September 6, 2018
Author(s)
Samuel M. Brewer, Joan M. Dreiling, Nicholas D. Guise, Shannon M. Hoogerheide, Aung Naing, Joseph N. Tan
Multiple-ionized atoms can be captured at low energy in a compact Penning trap, allowing the isolation of a single charge state to measure the radiative lifetime of an atomic state that decays via weakly allowed transitions. Such a measurement is reported

Experiments with highly-ionized atoms in unitary Penning traps

August 14, 2015
Author(s)
Shannon Hoogerheide, Aung Naing, Joan M. Dreiling, Samuel M. Brewer, Nicholas D. Guise, Joseph N. Tan
Highly-ionized atoms with special properties have been proposed for interesting applications, including potential candidates for a new generation of optical atomic-clocks at the 1 part in 1019 level of precision, quantum-information processing, and tests

A Miniature EBIT with Ion Extraction for Isolating Highly Charged Ions

May 28, 2015
Author(s)
Shannon Hoogerheide, Joseph N. Tan
We report on the development of a room-temperature miniature electron beam ion trap (EBIT) for efficient production of charge states with relatively low ionization energies. A unitary Penning trap is modified slightly to provide the magnetic field and

Large-Area TKIDs for a New Generation of Neutron Beta Decay Experiments

January 1, 2001
Author(s)
Elizabeth Scott, Jimmy P. Caylor, Maynard S. Dewey, Jiansong Gao, Colin A. Heikes, Shannon Hoogerheide, Hans Pieter Mumm, Jeffrey S. Nico, Joel Ullom, Michael Vissers
Nuclear physics has long played a central role in our efforts to better understand the natural world. Several experiments are well positioned to improve limits in searches for physics Beyond the Standard Model (BSM). Many of the experiments in nuclear