Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Thomas Gerrits (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 1 - 25 of 115

Precision Bounds on Continuous-Variable State Tomography Using Classical Shadows

March 18, 2024
Author(s)
Srilekha Gandhari, Victor Albert, Thomas Gerrits, Jacob Taylor, Michael Gullans
Shadow tomography is a framework for constructing succinct descriptions of quantum states, called classical shadows, with powerful methods to bound the estimators used. Classical shadows are well-studied in the discrete-variable case, which consists of

Comparison of the detection efficiency calibration of a single-photon avalanche detector between NIST and PTB

September 12, 2023
Author(s)
Hristina Georgieva, Thomas Gerrits, Helmuth Hofer, Anouar Rahmouni, Oliver T. Slattery, Marco Lopez, Joshua Bienfang, Alan Migdall, Stefan Kueck
The detection efficiency of a commercial single-photon avalanche detector (SPAD) has been independently determined at two national metrology institutes, the National Institute of Standards and Technology (NIST) - USA and the Physikalisch-Technische

Single-photon Sources and Detectors Dictionary

September 7, 2023
Author(s)
Joshua Bienfang, Thomas Gerrits, Paulina Kuo, Alan Migdall, Sergey Polyakov, Oliver T. Slattery
The intention of this dictionary is to define relevant terms and metrics used in the characterization of single-photon detectors and sources with the goal to promote better understanding and communication of those metrics across the single-photon

Applications of single photons in quantum metrology, biology and the foundations of quantum physics

May 26, 2023
Author(s)
Christophe Couteau, Stefanie Barz, Thomas Durt, Thomas Gerrits, Jan Huwer, Robert Prevedel, John Rarity, Gregor Weihs
With the development of photonic quantum technologies, single photons have become key for various applications including quantum communication and quantum computing, discussed in an accompanying Review. Here we overview the applications of single photons

Experimental demonstration of local area entanglement distribution between two distant nodes, coexisting with classical synchronization

May 12, 2023
Author(s)
Anouar Rahmouni, Paulina Kuo, Yicheng Shi, Jabir Marakkarakath Vadakkepurayil, Nijil Lal Cheriya Koyyottummal, Ivan Burenkov, Ya-Shian Li-Baboud, Mheni Merzouki, Abdella Battou, Sergey Polyakov, Oliver T. Slattery, Thomas Gerrits
We successfully demonstrated polarization entanglement distribution and classical time synchronization using a high-accuracy precision time protocol between two quantum nodes located 250 meters apart using a single fiber simultaneously carrying both

Sub-200 ps Quantum Network Node Synchronization over a 128 km Link White Rabbit Architecture

May 12, 2023
Author(s)
Wayne McKenzie, Ya-Shian Li-Baboud, Mark Morris, Gerald Baumgartner, Anouar Rahmouni, Paulina Kuo, Oliver T. Slattery, Bruce Crabill, Mheni Merzouki, Abdella Battou, Thomas Gerrits
We show sub-200 ps synchronization between quantum networks nodes that are separated by two 64 km deployed fiber links, providing a 128 km link architecture. The architecture employs one grandmaster and two boundary White Rabbit system clocks and shows

Synchronization and Coexistence in Quantum networks

March 27, 2023
Author(s)
Ivan Burenkov, Alexandra Semionova, FNU Hala, Thomas Gerrits, Anouar Rahmouni, DJ Anand, Ya-Shian Li-Baboud, Oliver T. Slattery, Abdella Battou, Sergey Polyakov
We investigate the coexistence of clock synchronization protocols with quantum signals in a common single-mode optical fiber. By measuring optical noise between 1500 nm to 1620 nm we demonstrate a potential for up to 100 quantum DWDM channels coexisting

Hyperspectral photon-counting optical time domain reflectometry

October 4, 2022
Author(s)
Anouar Rahmouni, Samprity Saha, Oliver T. Slattery, Thomas Gerrits
Optical time-domain reflectometry (OTDR) is one of the most used techniques for nondestructive characterization of optical fiber links. Although conventional OTDR exhibits good performance in classical network applications, photoncounting OTDR (ν-OTDR)

Portable polarization-entangled photon source & receiver toolset for quantum network metrology

October 4, 2022
Author(s)
Anouar Rahmouni, Thomas Gerrits, Paulina Kuo, Dileep Reddy, Lijun Ma, Xiao Tang, Oliver T. Slattery
A quantum network will consist of many physically separated nodes connected by quantum communication channels that distribute entanglement between them. Such nodes will require mechanisms for the generation, routing, and measurement of quantum states to

Towards entangled photon pair generation from SiC-based microring resonator

October 4, 2022
Author(s)
Anouar Rahmouni, Lijun Ma, Xiao Tang, Thomas Gerrits, Lutong Cai, Qing Li, Oliver T. Slattery
Entangled photon sources are fundamental building blocks for quantum communication and quantum networks. Recently, silicon carbide emerged as a promising material for integrated quantum devices since it is CMOS compatible with favorable mechanical

Quantum computational advantage with a programmable photonic processor

June 1, 2022
Author(s)
L.S. Madsen, F. Laudenbach, M.F. Askarani, F. Rortais, T. Vincent, J.F.F. Bulmer, F.M. Miatto, L. Neuhaus, L.G. Helt, Matthew Collins, Adriana Lita, Thomas Gerrits, Sae Woo Nam, V.D. Vaidya, M. Menotti, I. Dhand, Zachary Vernon, N. Quesada, J. Lavoie
The demonstration of quantum computational advantage is a key milestone in the race to build a fully functional quantum computer. This milestone involves showing that a particular quantum device can perform a well-defined computational task in a manner

A self-validated detector for characterization of quantum network components

May 7, 2022
Author(s)
Anouar Rahmouni, Thomas Gerrits, Alan Migdall, Oliver T. Slattery, Ping-Shine Shaw, Joseph P. Rice
We are developing a nearly polarization-independent, low-cost optical trap detector between 1000 nm and 1550 nm for optical power measurements. A NIST-traceable optical power calibration of this trap detector showed a promising result.

White Rabbit-assisted quantum network node synchronization with quantum channel coexistence

May 7, 2022
Author(s)
Thomas Gerrits, Ivan Burenkov, Ya-Shian Li-Baboud, Anouar Rahmouni, DJ Anand, FNU Hala, Oliver T. Slattery, Abdella Battou, Sergey Polyakov
We show that the Ethernet-based time transfer protocol 'White Rabbit' can synchronize two distant quantum-networked nodes to within 4 ps, enabling HOM interference at >90 % visibility using 17.6 ps FWHM single-photons coexisting with White Rabbit.

Picosecond-resolution single-photon time lens for temporal mode quantum processing

March 28, 2022
Author(s)
Chaitali Joshi, Ben Sparkes, Alessandro Farsi, Thomas Gerrits, Sae Woo Nam, Varun Verma, Sven Ramelow, Alex Gaeta
Techniques to control the spectro-temporal properties of quantum states of light at ultrafast time scales are crucial for several applications in quantum information science. In this work, we report an all-optical time lens based on Bragg-scattering four

Mixture model analysis of Transition Edge Sensor pulse height spectra

December 9, 2021
Author(s)
Kevin J. Coakley, Jolene D. Splett, Thomas Gerrits
To calibrate an optical transition edge sensor, for each pulse of the light source (e.g., pulsed laser), one must determine the ratio of the expected number of photons that deposit energy and the expected number of photons created by the laser. Based on

Multiphoton quantum metrology with neither pre- nor post-selected measurements

October 21, 2021
Author(s)
Chenglong You, Mingyuan Hong, Peter Bierhorst, Adriana Lita, Scott Glancy, Steven Kolthammer, Emanuel Knill, Sae Woo Nam, Richard Mirin, Omar Magana-Loaiza, Thomas Gerrits
The quantum statistical fluctuations of the electromagnetic field establish fundamental limits on the sensitivity of optical measurements. This fundamental limit, known as the shot-noise limit, imposes constraints on classical technologies, which can be