Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Dietrich Leibfried (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 126 - 150 of 261

Quantum information processing and metrology with trapped ions

January 25, 2011
Author(s)
David J. Wineland, Dietrich G. Leibfried
The use of trapped atomic ions in the field of quantum information processing is briefly reviewed. We summarize the basic mechanisms required for logic gates and the use of the gates in demonstrating simple algorithms. We discuss the potential of trapped

Efficient fiber optic detection of trapped ion flourescence

July 9, 2010
Author(s)
Aaron Vandevender, Yves Colombe, Jason Amini, Dietrich G. Leibfried, David J. Wineland
Integration of fiber optics may play a critical role in the development of quantum information processors based on trapped ions, atoms, and quantum dots. Fibers could help enable a scalable and efficient means of collecting light from and delivering light

Toward scalable ion traps for quantum information processing

March 16, 2010
Author(s)
Jason Amini, Hermann Uys, Janus H. Wesenberg, Signe Seidelin, Joseph W. Britton, John J. Bollinger, Dietrich G. Leibfried, Christian Ospelkaus, Aaron Vandevender, David J. Wineland
The basic components for a quantum information processor using trapped ions have been demonstrated in a number of experiments. To perform complex algorithms that are not tractable with classical computers, these components need to be integrated and scaled

Realization of a programmable two-qubit quantum processor

November 15, 2009
Author(s)
David Hanneke, Jonathan Home, John D. Jost, Jason Amini, Dietrich G. Leibfried, David J. Wineland
The universal quantum computer is a device that could simulate any physical system and represents a major goal for the field of quantum information science. Algorithms performed on such a device are predicted to offer significant gains for some important

Quantum walk on a line for a trapped ion

October 30, 2009
Author(s)
Peng Xue, Barry Sanders, Dietrich Leibfried
We show how a quantum walk can be experimentally realized for a single trapped ion and how to interpolate between the quantum and random walk by randomizing the phase of a generalized Hadamard coin flip. The signature of the quantum walk is manifested not

Scalable arrays of doped silicon RF Paul traps

October 26, 2009
Author(s)
Joseph W. Britton, Dietrich G. Leibfried, James A. Beall, Brad R. Blakestad, Janus H. Wesenberg, David J. Wineland
We report techniques for the fabrication of multi-zone linear RF Paul traps which exploit the machinability and electrical conductivity of bulk doped silicon. The approach was verified by trapping and Doppler cooling 24Mg+ ions in two trap geometries: a

Complete Methods Set for Scalable Ion Trap Quanum Information Processing

September 4, 2009
Author(s)
Jonathan Home, David Hanneke, John D. Jost, Jason Amini, Dietrich G. Leibfried, David J. Wineland
Building a quantum information processor capable of outperforming classical devices will require many quantum bits (qubits) and very large numbers of logical operations \cite{05Knill}. A key requirement is the faithful transport of qubits throughout the

Stylus ion trap for enhanced access and sensing

August 1, 2009
Author(s)
Robert Maiwald, Gerd Leuchs, Dietrich Leibfried, Joseph W. Britton, James C. Bergquist, David J. Wineland
We experimentally characterized a novel radio-frequency (rf) ion trap geometry formed by two concentric cylinders over a ground plane. These traps allow for optical and physical access over more than 2 pi solid angle reaching 91% and 96% of 4 respectively

Optimal Surface-Electrode Trap Lattices for Quantum Simulation with Trapped Ions

June 12, 2009
Author(s)
Roman Schmied , Janus H. Wesenberg, Dietrich Leibfried
Trapped ions offer long internal state (spin) coherence times and strong inter-particle interactions mediated by the Coulomb force. This makes them interesting candidates for quantum simulation of coupled lattices. To this end it is desirable to be able to

Entangled Mechanical Oscillators

June 4, 2009
Author(s)
John D. Jost, Jonathan Home, Jason Amini, David Hanneke, R. Ozeri, Christopher Langer, John J. Bollinger, Dietrich G. Leibfried, David J. Wineland
Quantum mechanics describes the state and evolution of isolated systems, where entangled and superposition states can be created. Its application to large systems led Schr dinger to posit his famous cat, which exists in a superposition of alive and dead

High Fidelity Transport of Trapped-Ion Qubits through an X-Junction Trap Array

April 17, 2009
Author(s)
Brad R. Blakestad, Aaron Vandevender, Christian Ospelkaus, Jason Amini, Joseph W. Britton, Dietrich G. Leibfried, David J. Wineland
Trapped ions are a useful system for studying the elements of quantum information processing. Simple alogrithms have been demonstrated, but scaling to much larter tasks requires the ability to manipulate many qubits. To achieve this, ions could be

Quantum Teleportation with Atomic Qubits

October 16, 2008
Author(s)
J Chiaverini, T Schaetz, Joseph W. Britton, Wayne M. Itano, John D. Jost, Emanuel Knill, C. Langer, Dietrich Leibfried, R Ozeri, David J. Wineland