Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Scott Diddams (Assoc)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 226 - 250 of 631

Phase Noise in the Photodetection of Ultrashort Optcial Pulses

June 2, 2010
Author(s)
Jennifer A. Taylor, Franklyn J. Quinlan, Archita Hati, Craig W. Nelson, Scott A. Diddams, Shubahshish Datta, Abhay Joshi
Femtosecond laser frequency combs provide an effective and efficient way to take an ultra-stable optical frequency reference and divide the signal down into the microwave region. In order to convert optical pulses into a usable rf signal, one must use high

Mid-IR frequency comb upconversion spectroscopy

May 16, 2010
Author(s)
Todd Johnson, Scott A. Diddams
We present a mid-infrared frequency comb generated via differency frequency mixing of a Yb femtosecond fiber laser. After passing through a methane gas sample, the MIR comb is upconverted and dispersed onto a CCD for detection.

Optical frequency stabilization of a 10 GHz Ti:sapphire frequency comb by saturated absorption spectroscopy in 87Rubidium

November 4, 2009
Author(s)
Dirk Heinecke, Albrecht Bartels, Tara M. Fortier, Danielle Braje, Leo Hollberg, Scott A. Diddams
The high power per mode of a recently-developed 10 GHz femtosecond Ti:sapphire frequency comb permits nonlinear Doppler-free saturation spectroscopy in 87Rubidium with a single mode of the comb. We use this access to the natural linewidth of the Rubidium

10-GHz Self-Referenced Optical Frequency Comb

October 30, 2009
Author(s)
Albrecht Bartels, Dirk Heinecke, Scott Diddams
For a decade the femtosecond laser based frequency comb has played a key role in high precision optical frequency metrology.While often referred to as a precise optical frequency ruler, its tick marks are in fact too densely spaced for direct observation

A Spin-1/2 Optical Lattice Clock

August 7, 2009
Author(s)
Nathan D. Lemke, Andrew D. Ludlow, Zeb Barber, Tara M. Fortier, Scott A. Diddams, Yanyi Jiang, Steven R. Jefferts, Thomas P. Heavner, Thomas E. Parker, Christopher W. Oates
We experimentally investigate an optical clock based on 171Yb (I = 1/2) atoms confined in an optical lattice. We have evaluated all known frequency shifts to the clock transition, including the density-dependent collision shift, with an uncertainty of 0.19

Frequency Measurements of Al+ and Hg+ Optical Standards

June 8, 2009
Author(s)
Wayne M. Itano, James C. Bergquist, Till P. Rosenband, David J. Wineland, David Hume, Chin-wen Chou, Steven R. Jefferts, Thomas P. Heavner, Tom Parker, Scott Diddams, Tara Fortier
Frequency standards based on narrow optical transitions in 27Al+ and 199Hg+ ions have been developed at NIST. Both standards have absolute reproducibilities of a few parts in 10 17. This is about an order of magnitude better than the fractional uncertainty

A deep-UV optical frequency comb at 205 nm

May 25, 2009
Author(s)
Scott A. Diddams, E Peters, P Fendel, S Reinhardt, T W. Hansch, T Udem
By frequency quadrupling a picosecond pulse train from a Ti:sapphire laser at 820 nm we generate a frequency comb at 205 nm with nearly bandwidth-limited pulses. The nonlinear frequency conversion is accomplished by two successive frequency doubling stages

Probing interactions between ultracold fermions

April 17, 2009
Author(s)
G K. Campbell, M M. Boyd, J W. Thomsen, M J. Martin, S Blatt, M D. Swallows, Travis L. Nicholson, Tara Fortier, Christopher W. Oates, Scott Diddams, Nathan D. Lemke, Pascal Naidon, Paul S. Julienne, Jun Ye, Andrew Ludlow
At ultracold temperatures, the Pauli exclusion principle suppresses collisions between identical fermions. This has motivated the development of atomic clocks using fermionic isotopes. However, by probing an optical clock transition with thousands of

Generation of 20 GHz, sub-40 fs pulses at 960 nm via repetition rate multiplication

April 1, 2009
Author(s)
Matthew S. Kirchner, Danielle Braje, Tara M. Fortier, A.M. Weiner, Leo Hollberg, Scott A. Diddams
Optical filtering of a stabilized 1 GHz optical frequency comb produces a 20 GHz comb with ~40 nm bandwidth (FWHM) at 960 nm. Using a low finesse Fabry-Perot cavity in a double pass configuration provides a broad cavity coupling bandwidth (delta lambda