Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Daniel W. Siderius (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 26 - 41 of 41

Modulus--Pressure Equation for Confined Fluids

October 28, 2016
Author(s)
Daniel W. Siderius, Gennady Y. Gor, Vincent K. Shen, Noam Bernstein
Ultrasonic experiments allow one to measure the elastic modulus of bulk solid or fluid samples. Recently such experiments have been carried out on fluid-saturated nanoporous glass to probe the modulus of a confined fluid. In our previous work (J. Chem

Adsorption, X-ray Diffraction, Photoelectron, and Atomic Emission Spectroscopy Benchmark Studies for the Eighth Industrial Fluid Properties Simulation Challenge

January 31, 2016
Author(s)
Daniel Siderius, Vincent K. Shen, Raymond D. Mountain, Richard B. Ross, David B. Aeschliman, Riaz Ahmad, John K. Brennan, Myles L. Brostrom, Kevin A. Frankel, Jonathan D. Moore, Joshua D. Moore, Derrick M. Poirier, Matthias Thommes, Nathan E. Schultz, Kenneth D. Smith
The primary goal of the eighth industrial fluid properties simulation challenge was to test the ability of molecular simulation methods to predict the adsorption of organic adsorbates in activated carbon materials. The challenge focused, in particular, on

The Eighth Industrial Fluid Properties Simulation Challenge

January 31, 2016
Author(s)
Daniel Siderius, Vincent K. Shen, Raymond D. Mountain, Nathan E. Schultz, Riaz Ahmad, John K. Brennan, Kevin A. Frankel, Jonathan D. Moore, Richard B. Ross, Matthias Thommes, Kenneth D. Smith
The goal of the eighth industrial fluid properties simulation challenge was to test the ability of molecular simulation methods to predict the adsorption of organic adsorbates in activated carbon materials. In particular, the eighth challenge focused on

Relation Between Pore Size and the Compressibility of a Confi ned Fluid

November 18, 2015
Author(s)
Daniel W. Siderius, Vincent K. Shen, William P. Krekelberg, Gennady Y. Gor, Christopher J. Rasmussen, Noam Bernstein
When a fluid is conned to a nanopore, its thermodynamic properties differ from the properties of a bulk fluid. Measuring certain properties of con fined fluid can provide information about the pore sizes. Here we report a simple relation between the pore

Reference Diffraction Patterns, Microstructure, and Pore Size Distribution for the Copper (II) benzene-1,3,5-tricarboxylate Metal Organic Framework (Cu-BTC) Compounds

March 1, 2015
Author(s)
Winnie K. Wong-Ng, James A. Kaduk, Daniel W. Siderius, Andrew J. Allen, Laura Espinal, Brad Boyerinas, Igor Levin, Matthew Suchomel, Jan Ilavsky, Eric J. Cockayne, Hui Wu
Cu-paddle-wheel-based Cu3(BTC)2 (nicknamed Cu-BTC, where BTC ≡ benzene 1,3,5-tricarboxylate) is a metal organic framework (MOF) compound that adopts a zeolite topology. We have determined the pore size distribution using the Gelb and Gubbins technique, the

Perfluorohexane Adsorption in BCR-704 Faujasite Zeolite Benchmark Studies for the Seventh Industrial Fluid Properties Simulation Challenge

January 6, 2014
Author(s)
Richard B. Ross, John K. Brennan, Kevin A. Frankel, Jonathan D. Moore, Raymond D. Mountain, Joshua D. Moore, Riaz Ahmad, Matthias Thommes, Vincent K. Shen, Nathan E. Schultz, Daniel Siderius, Kenneth D. Smith
The primary goal of the seventh industrial fluid properties simulation challenge was to test the ability of molecular simulation methods to predict the adsorption of organic adsorbates in zeolitic materials. The challenge focused, in particular, on the

Connection between thermodynamics and dynamics of simple fluids in highly attractive pores

October 25, 2013
Author(s)
William P. Krekelberg, Vincent K. Shen, Daniel W. Siderius, Thomas M. Truskett, Jeffrey R. Errington
We investigate the structural and diffusive dynamics properties of a model fluid in highly-absorptive cylindrical pores. At subcritical temperatures, self diffusion displays three distinct regimes as a function of average pore density ρ: 1) a decrease in

The Seventh Industrial Fluid Properties Simulation Challenge

October 8, 2013
Author(s)
Riaz Ahmad, John K. Brennan, Kevin A. Frankel, Jonathan D. Moore, Joshua D. Moore, Raymond D. Mountain, Richard B. Ross, Vincent K. Shen, Nathan E. Schultz, Daniel Siderius, Kenneth D. Smith, Matthias Thommes
The primary goal of the seventy industrial fluid properties simulation challenge was to test the ability of molecular simulation methods to predict the adsorption of organic adsorbates in zeolite materials. Zeoliet adsorbents are used in a variety of

Flexible Metal Organic Framework Compound, Ni(1,2-bis(4-pyridyl)ethylene)[Ni(CN)4]n, for CO2 Sorption Applications

April 7, 2013
Author(s)
Winnie K. Wong-Ng, Jeffrey T. Culp, Yu-Sheng Chen, Laura Espinal, Andrew J. Allen, Daniel W. Siderius, Craig M. Brown, Wendy Queen, Peter Zavalij, Christopher Matranga
New sorbent materials are required for carbon capture because coal-fired electrical power plants, the largest emitters of this greenhouse gas, will continue to produce much of our nation’s electricity for at least several decades. Within the family of

Improved Synthesis and Crystal Structure of the Flexible Pillared Layer Porous Coordination Polymer: Ni(1,2-bis(4-pyridyl)ethylene)[Ni(CN)4]

April 4, 2013
Author(s)
Winnie K. Wong-Ng, Jeffrey T. Culp, Yu-Sheng Chen, Peter Zavalij, Laura Espinal, Daniel W. Siderius, Andrew J. Allen, Steve Scheins, Christopher Matranga
A new method of synthesis was developed for the flexible coordination polymer Ni(L)[Ni(CN)4], L=1,2-bis(4-pyridyl)ethylene (bpene) to increase its CO2 sorption uptake. The structure of the newly synthesized bpene has been determined by synchrotron X-ray

Time dependent CO2 sorption hysteresis in a one-dimensional microporous octahedral molecular sieve

April 6, 2012
Author(s)
Laura Espinal, Winnie K. Wong-Ng, Andrew J. Allen, Daniel W. Siderius, Chad R. Snyder, Eric J. Cockayne, Lan (. Li, James A. Kaduk, Anais E. Espinal, Steven L. Suib, Chun Chiu
A critical challenge in the development of novel carbon capture materials with engineered porous architectures is to understand and control the phenomenon of sorption hysteresis, whereby the path to adsorption of gas molecules by the porous host differs