Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search Publications by

David F. Plusquellic (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 1 - 25 of 114

Multiheterodyne Spectroscopy Using Multi-frequency Combs

May 13, 2017
David F. Plusquellic, Gerd A. Wagner, Adam Fleisher, David Long, Joseph T. Hodges
Near-IR dual frequency combs generated from waveform driven electro-optic phase modulators (EOMs) are used for high resolution studies in low pressure cells and for remote sensing from natural targets (Boulder Flatirons). Arbitrary waveform generators

Using Terahertz Waves to Identify the Presence of Goethite via Antiferromagnetic Resonance

April 24, 2017
Edward J. Garboczi, David F. Plusquellic, Robert D. McMichael, Virgil Provenzano, Paul E. Stutzman, Jack T. Surek, Shin G. Chou, Shuangzhen Wang
Virtually every corrosion detection method reports only the presence of a material phase denoting probable corrosion, not its spectral signature. A signature specific to the type of iron oxide corrosion would not only confirm the presence of corrosion but

Adaptive Terahertz Dual Frequency Comb Spectrometer

December 26, 2016
Flavio Caldas da Cruz, Francisco S. Vieira, David F. Plusquellic, Scott A. Diddams
Terahertz dual frequency comb spectroscopy (THz-DFCS) yields high spectral resolution without compromising bandwidth. Nonetheless, the resolution of THz-DFCS is usually limited by the laser repetition rate, which is typically between 80 MHz and 1 GHz. In

Multiplexed sub-Doppler spectroscopy with an optical frequency comb

December 13, 2016
David A. Long, Adam J. Fleisher, David F. Plusquellic, Joseph T. Hodges
An optical frequency comb generated with an electro-optic phase modulator and a chirped radiofrequency waveform is used to perform saturation spectroscopy on the D1 and D2 transitions of atomic potassium. With a comb tooth spacing of 2 MHz and a bandwidth

Coherent cavity-enhanced dual-comb spectroscopy

May 4, 2016
Adam J. Fleisher, David A. Long, Zachary D. Reed, David F. Plusquellic, Joseph T. Hodges
Multiheterodyne spectroscopy performed with two stabilized optical frequency combs (OFCs) has shown great potential as a fast, accurate, and high-resolution substitute for existing interferometry methods that require lengthy integration times and precision

Vibronic Coupling in Asymmetric Bichromophores: Experimental Investigation of Diphenylmethane-d5

August 14, 2014
Nathan Pillsbury, Nathanael M. Kidwell, Benjamin Nebgen, Lyudmila V. Slipchenko, Kevin O. Douglass, John R. Cable, David F. Plusquellic
Vibrationally and rotationally resolved electronic spectra of diphenylmethane-d5 (DPM-d5) are reported in the isolated-molecule environment of a supersonic expansion. While small, the asymmetry induced by deuteration of one of the aromatic rings is

Multiheterodyne spectroscopy with optical frequency combs generated from a continuous-wave laser

May 1, 2014
David A. Long, Adam J. Fleisher, Kevin O. Douglass, Stephen E. Maxwell, Katarzyna E. Bielska, Joseph T. Hodges, David F. Plusquellic
Dual-drive Mach-Zehnder modulators were utilized to produce power-leveled optical frequency combs (OFCs) from a continuous-wave laser. The resulting OFCs contained up to fifty unique frequency components and spanned more than 200 GHz. Simple changes to the

Corrosion Detection in Concrete Rebars Using a Spectroscopic Technique

January 11, 2014
Edward J. Garboczi, Paul E. Stutzman, Shuangzhen S. Wang, Nicos Martys, Dat Duthinh, Virgil Provenzano, Shin G. Chou, David F. Plusquellic, Jack T. Surek, Sung Kim, Robert D. McMichael, Mark D. Stiles, Ahmed M. Hassan
Detecting the early corrosion of steel in reinforced concrete is a goal that has been much pursued. Since 2010, NIST has been working on a large project to develop an electromagnetic (EM) probe that detects the actual corrosion products via spectroscopic

Measurement and Simulation of Millimeter Wave Scattering Cross-sections from Steel-Reinforced Concrete

January 11, 2014
Ahmed M. Hassan, Edward Garboczi, Robert McMichael, Jack T. Surek, Mark D. Stiles, David F. Plusquellic, Virgil Provenzano, Paul E. Stutzman, Shuangzhen S. Wang, Sung Kim, Michael D. Janezic, Jason Coder, Nicos Martys, David R. Novotny
Some iron oxide corrosion products exhibit antiferromagnetic magnetic resonances (AFMR) at around 100 GHz at normal temperatures. AFMR can be detected in laboratory conditions, which serves as the basis for a new non-destructive spectroscopic method for

Rapid scan absorption spectroscopy using a waveform-driven electro-optic phase modulator in the 1.6- 1.65 ym region

September 25, 2013
Kevin O. Douglass, Stephen Maxwell, Gar W. Truong, Roger D. van Zee, Joseph T. Hodges, David Long, David F. Plusquellic
A method is reported for performing fast optical frequency scans over a bandwidth of 36.9 GHz and at a sweep rate of 40 kHz using a single second-order sideband from an electro-optic phase modulator driven by an arbitrary waveform generator. Single

Segmented chirped-pulse Fourier transform submillimeter spectroscopy for broadband gas analysis

August 15, 2013
Justin L. Neill, Brent J. Harris, Amanda L. Steber, Kevin O. Douglass, David F. Plusquellic, Brooks H. Pate
Chirped-pulse Fourier transform spectroscopy has recently been extended to millimeter wave spectroscopy as a technique for the characterization of room-temperature gas samples. Here we present a variation of this technique that significantly reduces the

Frequency-agile, rapid scanning spectroscopy

April 28, 2013
Gar W. Truong, Kevin O. Douglass, Stephen E. Maxwell, Roger D. van Zee, David F. Plusquellic, Joseph T. Hodges, David A. Long
Challenging applications in trace gas analyses require high precision and acquisition rates.1-4 Many continuous-wave laser spectroscopy techniques exhibit significant sensitivity and potential;5 however, their scanning rates are slow because they rely upon

Construction of a High Power OPO Laser system for Differential Absorption LIDAR

September 13, 2011
Kevin O. Douglass, Stephen E. Maxwell, David F. Plusquellic, Joseph T. Hodges, Roger D. van Zee, Daniel V. Samarov, James R. Whetstone
Our goal is to develop and characterize optical measurement technology to enable accurate quantification of greenhouse-gas emissions to meet the needs of industry and regulators. A 1064 nm pumped high energy optical parametric oscillator (OPO) operating

On the electronic excited state dynamics of vibronic transitions. High resolution electronic spectra of acenaphthene and its argon van der Waals complex in the gas phase.

September 1, 2011
Leonardo Avarez-Valtierra, David F. Plusquellic, John T. Yi, David W. Pratt
Rotationally resolved fluorescence excitation spectroscopy has been used to study the dynamics, electronic distribution, and the relative orientation of the transition moment vector in several vibronic transitions of acenaphthene (ACN) and in its Ar van

Rotationally Resolved C2 Symmetric Conformers of Bis-(4-hydroxyphenyl)methane: Textbook Examples of Excitonic Coupling in the S1 and S2 Electronic States

September 1, 2011
Shin G. Chou, Chirantha P. Rodrigo, Christian Muller, Kevin O. Douglass, Timothy Zwier, David F. Plusquellic
Rotationally resolved microwave and ultraviolet spectra of jet-cooled bis-4 hydroxy)-diphenylmethane (b4HBM) have been obtained using Fourier-transform microwave and UV laser/molecular beam spectrometers. A recent vibronic level study of b4HPM1 has