Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Pawel Jaruga (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 151 - 175 of 224

Measurement of formamidopyrimidines in DNA

December 15, 2008
Author(s)
Pawel Jaruga, Guldal Kirkali, Miral M. Dizdar
Formamidopyrimidines, 4,6-diamino-5-formamidopyrimidine (FapyAde) and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyGua), are among major lesions in DNA generated by hydroxyl radical attack, UV radiation or photosensitization in vitro and in vivo

Cellular DNA Biomarkers for the Safety of Tissue-Engineered Medical Products Using Artificial Skin as a Model

October 16, 2008
Author(s)
H Rodriguez, C D. O'Connell, Peter E. Barker, M. Dizdaroglu, Donald H. Atha, Pawel Jaruga, M Birincioglu, M A. Marino, P McAndrew
Fundamental to the safety of many tissue-engineered medical products is how cells respond to a given polymer when implanted into the body. Assurance of cellular stability during the manufacturing, storage and shipment of such products is crucial to achieve

Structural alterations in breast stromal and epithelial DNA: the influence of 8,5'-cyclo-2'-deoxyadenosine

June 1, 2006
Author(s)
K. M. Anderson, Pawel Jaruga, C. R. Ramsey, N. K. Gilman, V. M. Green, S. W. Rostad, J. T. Emerman, M Miral Dizdar, D. C. Malins
(5'S)-8,5'-Cyclo-2'-deoxyadenosine (S-cdA), which arises from the reaction of the hydroxyl radical (*OH) with 2'-deoxyadenosine in DNA, is a lesion comprising a base-sugar linkage that distorts the DNA backbone. This structure impedes transcription and

Repair of Formamidopyrimidines in DNA Involves Different Glycosylases - Role of the OGG1, NTH1, and NEIL1 Enzymes

December 9, 2005
Author(s)
J Hu, N de Souza-Pinto, K Haraguchi, Barbara A. Hogue, Pawel Jaruga, M M. Greenberg, Miral M. Dizdar, V. Bohr
2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG) and 4,6-diamino-5-formamidopyrimidine (FapyA), are formed abundantly in DNA of cultured cells or tissues exposed to ionizing radiation or to other free radical-generating systems. We show here that FapyG
Was this page helpful?