Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications

NIST Authors in Bold

Displaying 1001 - 1025 of 1694

Detection-Loophole-Free Test of Quantum Nonlocality, and Applications

September 26, 2013
Author(s)
B. G. Christensen, Kevin McCusker, Joseph Altepeter, Brice R. Calkins, Thomas Gerrits, Adriana Lita, Aaron J. Miller, Krister Shalm, Sae Woo Nam, P. G. Kwiat
We present a source of entangled photons that violates a Bell inequality free of the "fair-sampling" assumption, by over 50 standard deviations, and with enough "efficiency" overhead to eventually perform a fully loophole-free test of local realism. The

High quantum-efficiency photon-number-resolving detector for photonic on-chip information processing

September 18, 2013
Author(s)
Brice R. Calkins, Paolo L. Mennea, Adriana E. Lita, Benjamin Metcalf, Steven Kolthammer, Antia A. Lamas-Linares, Justin Spring, Peter C. Humphreys, Richard P. Mirin, James Gates, Peter Smith, Ian Walmsley, Thomas Gerrits, Sae Woo Nam
The integrated optical circuit is a promising architecture for the realization of complex quantum optical states and information networks. One element that is required for many of these applications is a high-efficiency photon detector capable of photon

Spectral response of an upconversion detector and spectrometer

September 17, 2013
Author(s)
Paulina S. Kuo, Oliver T. Slattery, Yong-Su Kim, Jason S. Pelc, M. M. Fejer, Xiao Tang
We theoretically and experimentally investigate the spectral response of an upconversion detector and discuss implications for its use as an infrared spectrometer. Upconversion detection is based on high-conversion-efficiency sum-frequency generation (SFG)

Two-photon interference with continuous-wave operating multi-mode coherent light

September 12, 2013
Author(s)
Yong-Su Kim, Oliver T. Slattery, Paulina Kuo, Xiao Tang
We report two-photon interference with continuous-wave multi-mode coherent light. We show that the two-photon interference, in terms of the detection time difference, reveals two-photon beating fringes with the visibility V = 0.5. While scanning the

Development of a Quantum-Voltage-Calibrated Noise Thermometer at NIM

September 11, 2013
Author(s)
Jifeng Qu, Samuel Benz, Jianqiang Zhang, Horst Rogalla, Yang Fu, Alessio Pollarolo, Jintao Zhang
A quantum-voltage-calibrated Johnson-noise thermometer was developed at NIM, which measures the Boltzmann constant k through comparing the thermal noise across a 100  sense resistor at the temperature of the triple point water to the comb-like voltage

Johnson-noise thermometry based on a quantized-voltage noise source at NIST

September 11, 2013
Author(s)
Alessio Pollarolo, Tae H. Jeong, Samuel Benz, Paul Dresselhaus, Horst Rogalla, Weston L. Tew
Johnson Noise Thermometry is an electronic approach to measuring temperature. For several years, NIST has been developing a switching-correlator-type Johnson-noise thermometer that uses a quantized voltage noise source as an accurate voltage reference

State and Measurement Tomography of an Exchange-Only Spin Qubit

September 1, 2013
Author(s)
Jacob M. Taylor, Medford Jim, Johannes Beil, Stephen Bartlett, Andrew Doherty, Emmanuel Rashba, David P. DiVincenzo, H Lu, A. C. Gossard
We demonstrate the initialization, full electrical control, and state tomography of an exchange- only spin qubit in a GaAs heterostructure. Decoherence and leakage from the qubit subspace are accounted for with a model of charge noise and fluctuating

Direct Comparison of two NIST PJVS systems at 10 V

August 27, 2013
Author(s)
Stephane Solve, Alain Rufenacht, Charles J. Burroughs, Samuel Benz
Two NIST Programmable Josephson Voltage Standard (PJVS) systems have been directly compared at 10V using different nanovoltmeters at the temperature of the laboratory. These PJVS systems use arrays double-stacked superconducting-niobium Josephson junctions

QKD on a Board Limited by Detector Rates in a Free-Space Environment

August 25, 2013
Author(s)
Alan Mink, Joshua Bienfang
We discuss a high-speed quantum key distribution (QKD) system with the protocol infrastructure implemented on a single printed circuited board that can operate with various photonic subsystems. We achieve sub-nanosecond resolution with serial data

Micro-fabricated stylus ion trap

August 7, 2013
Author(s)
Kyle S. McKay, Christian L. Arrington, Ehren D. Baca, Jonathan J. Coleman, Yves Colombe, Patrick Finnegan, Dustin A. Hite, Andrew E. Hollowell, Robert Jordens, John D. Jost, Dietrich G. Leibfried, Adam M. Rowen, Ulrich J. Warring, David J. Wineland, David P. Pappas, Andrew C. Wilson
An electroformed, three-dimensional stylus Paul trap was designed to confine a single atomic ion for use as a sensor to probe the electric-field noise of proximate surfaces. The trap was microfabricated with the UV-LIGA technique to reduce the distance of

Electrically-protected resonant exchange qubits in triple quantum dots

July 31, 2013
Author(s)
Jacob M. Taylor, Vanita Srinivasa, Medford Jim
We present a modulated microwave approach for quantum computing with qubits comprising three spins in a triple quantum dot. This approach includes single- and two-qubit gates that are protected against low-frequency electrical noise, due to an operating

The Resonant Exchange Qubit

July 31, 2013
Author(s)
Jacob M. Taylor, Medford Jim, Johannes Beil, Emmanuel Rashba, H Lu, A. C. Gossard, C. M. Marcus
We introduce a solid-state qubit in which exchange interactions among confined electrons provide both the static longitudinal field and the oscillatory transverse field, allowing rapid and full qubit control via rf gate-voltage pulses. We demonstrate two
Displaying 1001 - 1025 of 1694
Was this page helpful?