Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications

NIST Authors in Bold

Displaying 401 - 425 of 1582

Complex by Design: Hydrotrope-Induced Micellar Growth in Deep Eutectic Solvents

January 1, 2021
Author(s)
Adrian Sanchez-Fernandez, Anna E. Leung, Elizabeth Kelley, Andrew J. Jackson
Here the microstructure of hydrotrope-surfactant assemblies in 1:2 choline chloride:glycerol (ChCl:Glyc) is presented. The effect of choline salicylate (ChSal) on the micellization of hexadecyltrimethylammonium chloride (C 16TAC) was investigated by

The interactive effect of heat and mass transport on water condensation in the gas diffusion layer of a proton exchange membrane fuel cell

December 31, 2020
Author(s)
Po-Ya A. Chuang, Md A. Rahman, Felipe Mojica, Daniel S. Hussey, David L. Jacobson, Jacob LaManna
Despite recent advancement in fuel cell technology, significant challenges remain in achieving high power density operation to meet the stringent targets of performance, durability and cost. This is due to the lack of fundamental understanding in

Spatially graded porous transport layers for gas evolving electrochemical energy conversion: High performance polymer electrolyte membrane electrolyzers

December 15, 2020
Author(s)
Jason K. Lee, ChungHyuk Lee, Kieran F. Fahy, Pascal J. Kim, Jacob LaManna, Eli Baltic, Daniel S. Hussey, David L. Jacobson, A Gago, S Kolb, K Friedrich, Aimy Bazylak
Decarbonizing society's energy infrastructure is foundational for a sustainable future and can be realized by harnessing renewable energy for clean hydrogen and on-demand power with fuel cells. Here, we elucidate how graded porous transport layers (PTLs)

VDAC Gating Thermodynamics, but Not Gating Kinetics, Are Virtually Temperature Independent

December 15, 2020
Author(s)
Maria Queralt-Martin, David Hoogerheide, Sergei Y. Noskov, Alexander M. Berezhkovskii, Tatiana Rostovtseva, Sergey Bezrukov
The voltage-dependent anion channel, VDAC, is the most abundant protein in the mitochondrial outer membrane and an archetypical β-barrel channel. Here, we study the effects of temperature on VDAC channels reconstituted in planar lipid membranes at the

Competing Antiferromagnetic-Ferromagnetic States in d 7 Kitaev Honeycomb Magnet

December 14, 2020
Author(s)
Hector Vivanco, Benjamin Trump, Craig Brown, Tyrel M. McQueen
The Kitaev model is a rare example of an analytically solvable and physically instantiable Hamiltonian yielding a topological quantum spin liquid ground state. Here we report signatures of Kitaev spin liquid physics in the honeycomb magnet Li 3Co 2SbO 6

Boosting Membrane Hydration for High Current Densities in Membrane Electrode Assembly CO2 Electrolysis

November 25, 2020
Author(s)
Hisan W. Shafaque, ChungHyuk Lee, Kieran F. Fahy, Jason K. Lee, Jacob LaManna, Eli Baltic, Daniel S. Hussey, David L. Jacobson, Aimy Bazylak
Despite the advantages of CO2 electrolyzers, efficiency losses due to mass and ionic transport across the membrane electrode assembly (MEA) are critical bottlenecks for commercial-scale implementation. In this study, more efficient electrolysis of CO2 was

Peritectic Phase Transition of Benzene and Acetonitrile into a Cocrystal Relevant to Titan, Saturn's Moon

November 14, 2020
Author(s)
Christina A. McConville, Yunwen Tao, Hayden Evans, Benjamin Trump, Jonathan B. Lefton, Wenqian Xu, Andrey A. Yakovenko, Elfi Kraka, Craig Brown, Tomce Runcevski
Benzene and acetonitrile are two of the most commonly used solvents found in almost every chemical laboratory. Titan, Saturn's icy moon, is one other place in the Solar system that has even larger amounts of these compounds, together with many other

SurA is a Cryptically Grooved Chaperone that Expands Unfolded Outer Membrane Proteins

October 21, 2020
Author(s)
Dagan C. Marx, Ashlee M. Plummer, Anneliese M. Faustino, Taylor Devlin, Michaela A. Roskopf, Mathis J. Leblanc, Henry J. Lessen, Barbara T. Amann, Patrick J. Fleming, Susan T. Krueger, Stephen D. Fried, Karen G. Fleming
The periplasmic chaperone network ensures the biogenesis of bacterial outer membrane proteins (OMPs) and has recently been identified as a promising target for antibiotics. SurA is the most important member of this network, both due to its genetic
Displaying 401 - 425 of 1582
Was this page helpful?