NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
For the past two and a half decades, anomalous heating of trapped ions from nearby electrode surfaces has continued to demonstrate unexpected results. Caused by electric-field noise, this heating of the ions' motional modes remains an obstacle for scalable
Elliot Fuller, Evgheni Strelcov, Jamie Weaver, Michael Swift, Joshua Sugar, Andrei Kolmakov, Nikolai Zhitenev, Jabez J. McClelland, Yue Qi, Joseph Dura, Alec Talin
The performance of solid-state electrochemical systems is intimately tied to the potential and lithium distributions across electrolyte–electrode junctions that give rise to interface impedance. Here, we combine two operando methods, Kelvin probe force
A generalization of the Hylleraas-Configuration Interaction method (Hy-CI) first proposed in a previous study, the Exponentially Correlated Hylleraas-Configuration Interaction method (E-Hy-CI) in which the single rij of an Hy-CI wave function is
Bryan Bosworth, Nick Jungwirth, Kassi Smith, Jerome Cheron, Franklyn Quinlan, Ari Feldman, Dylan Williams, Nate Orloff, Chris Long
Integrated circuits are building blocks in millimeter-wave handsets and base stations, requiring nonlinear characterization to optimize performance and energy efficiency. Today's sources use digital-to-analog converters to synthesize arbitrary electrical
E Potma, Christopher J. Evans, X. Xie, R. J. Jones, Jun Ye
We experimentally demonstrate the amplification of picosecond pulses at high repetition rates through coherent addition of successive pulses of a mode-locked pulse train in a high finesse optical cavity equipped with cavity dumping. Amplification greater
The experimental realization of Bose-Einstein condensation in a dilute gas has presented physicists with rare and novel opportunites. We anticipate that both theorists and experimenters will be taking advantage of these opportunities for some years to come
James Ashton, Stephen Moxim, Ashton Purcell, Patrick Lenahan, Jason Ryan
We report on a model for the bipolar amplification effect (BAE), which enables defect density measurements utilizing BAE in metal-oxide-semiconductor field-effect transistors (MOSFETs). BAE is an electrically detected magnetic resonance (EDMR) technique
Alexandros Chremos, Ferenc Horkay, Jack F. Douglas
Conformational properties of 'perfect' nanogel particles having a lattice network topology by molecular dynamics simulations to quantify the influence of polymer topology on the solution properties of this type of branched molecular architecture. In
Jack F. Douglas, Wengang Zhang, Francis W. Starr, Alexandros Chremos
We quantify the structure and dynamics in molecular simulations of star polymer films of varying arm mass Ma and number of star arms f on a supporting solid substrate with an attractive interaction and compare to the corresponding properties of thin films
Heather Patrick, Catherine Cooksey, Thomas A. Germer, Maria E. Nadal, Clarence Zarobila
The NIST Robotic Optical Scattering Instrument (ROSI) serves as the national reference instrument for specular and diffuse bidirectional reflectance measurements in the ultraviolet (UV) to short-wave infrared (SWIR) wavelength regions. This paper gives a
Jun-Ru Li, William Tobias, Kyle Matsuda, Calder Miller, Giacomo Valtolina, Luigi De Marco, Rueben Wang, John Bohn, Goulven Quemener, Jun Ye
We demonstrate suppression of the reactive loss in a gas of ultracold 40K 87Rb molecules in a three-dimensional geometry. The electric field-induced collisional shielding suppresses loss by two orders of magnitude while preserving elastic, long-range
Jacob Edmond Ricker, Jay H. Hendricks, Kevin O. Douglass, Sarah White, Sergei Syssoev
Optical gas refractometry has enabled new pressure standards to be developed based on a dual Fixed Length Optical Cavity (FLOC) system. NIST in partnership with MKS Instruments has created a portable FLOC pressure standard based gas refractivity. A key
This review presents a survey of the most important achievements in atomic and molecular calculations obtained with the Hylleraas-configuration interaction method (Hy-CI) and its extension the exponentially correlated Hylleraas-configuration interaction
Mikhail Mamaev, Peiru He, Thomas Bilitewski, Vijin Venu, Joseph Thywissen, Ana Maria Rey
We introduce a protocol to observe p-wave interactions in ultracold fermionic atoms loaded in a 3D optical lattice. Our scheme uses specific motionally excited band states to form an orbital subspace immune to band relaxation. A laser dressing is applied
MATTHEW SIMONS, Aly Artusio-Glimpse, chris holloway, Eric Imhof, Steven Jefferts, Robert Wyllie, Brian Sawyer, Thad Walker
We demonstrate the use of multiple atomic-level Rydberg-atom schemes for continuous frequency detection of radio-frequency (RF) fields. Resonant detection of RF fields by electromagnetically induced transparency and Autler-Townes (AT) splitting in Rydberg
Ryan Stein, Zachary Barcikowski, Sujitra Pookpanratana, Joshua M. Pomeroy, Michael Stewart
Gate-defined quantum dots (QD) benefit from the use of small grain size metals for gates materials because it aids in shrinking the device dimensions. However, it is not clear what differences arise with respect to process-induced defect densities and
Zachary Newman, Vincent N. Maurice, Tara Fortier, Connor Fredrick, Scott Diddams, John Kitching, Matthew Hummon
We describe a high-performance, compact optical frequency standard based on a microfabricated Rb vapor cell and a low-noise, external cavity diode laser operating on the Rb two-photon transition at 778 nm. The optical standard achieves an instability of 1
Varun Verma, Adriana Lita, Yao Zhai, Heli C. Vora, Richard Mirin, Sae Woo Nam, Boris Korzh, Alex Walter, Ryan Briggs, Marco Colangelo, Emma Wollman, Andrew Beyer, Jason Allmaras, D. Zhu, Ekkehart Schmidt, A. G. Kozorezov, Matthew Shaw
We developed superconducting nanowire single-photon detectors (SNSPDs) based on tungsten silicide (WSi) that show saturated internal detection efficiency up to a wavelength of 10 um. These detectors are promising for applications in the mid-infrared