NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Y Kawashima, R D. Suenram, Gerald T. Fraser, Francis J. Lovas, Katsuya Hirota
Abstract
Microwave spectra of Ar--28SiH4, Ar--29SiH4, Ar--30SiH4, and Ar--28SiD4 have been recorded using a pulsed-molecular-beam Fourier-transform microwave spectrometer. The K = 0 and K = 1 components of the J=3 <- 2 through the J = 7 <- 6 transitions have been measured and assigned in the 9 GHz to 24 GHz region. For the primary 28Si isotopic species, Ar--28SiH4 and Ar--28SiD4, a K = 0, A symmetry, a K=0, F symmetry, a doubly degenerate K = 1, E symmetry and an *}/K-doubled, K=1, F symmetry rotational progression are observed at the approximately} 1 K rotational temperature of the supersonic expansion. The rotational constants for the K = 0, A state for Ar--28SiH4 and Ar--28SiD4 are B = 1700.40624 (9) MHz and 1630.687073 (22) MHz and the centrifugal distortionconstants are, DJ = 29.089 (3) kHz and 20.0198 (8) kHz and HJ = 1.91(3) Hz and 0.851 (8) Hz, respectively, where type-A expanded uncertainties with a coverage factor, k = 3, are given here and elsewhere. The values of the rotational constants for the K = 0, A and F states and for the K = 1, E state are in good agreement with the infrared determined values for Ar--28SiH4. The measured linear Stark effect of the E-state transitions has been analyzed to give a dipole moment of 9.24(8) 10-32 C m [0.0277(2) D]. The observed relative intensities of the internal rotor states and the magnitude of the *}-doubling splitting of the K = 1, F state are compared with predictions from a previously proposed internal-rotation potential for this complex based on an analysis of the infrared spectrum.
Citation
Journal of Molecular Spectroscopy
Volume
197
Pub Type
Journals
Keywords
argon-silane, dipole moment, Fourier transform microwave spectroscopy, molecular structure, rotational spectrum, van der Waals complex
Citation
Kawashima, Y.
, Suenram, R.
, Fraser, G.
, Lovas, F.
and Hirota, K.
(1999),
The Rotational Spectrum of Ar-SiH<sub>4</sub> and Ar--SiD<sub>4</sub>, Journal of Molecular Spectroscopy
(Accessed October 10, 2025)