NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Eric J. Cockayne, Gregory M. Rutter, N Guisinger, Jason Crain, Joseph A. Stroscio, Phillip First
Abstract
Defects in graphene are of interest for their effect on electronic transport in this two-dimensional material. Point defects of typically two-fold and three-fold symmetry have long been observed in scanning tunneling microscopy (STM) studies of graphite. In epitaxial graphene grown at high temperatures on mechanically-polished SiC(0001), we observe a 6-fold "flower" defect by STM, with enhanced differential tunnel conductance over the 2 nm extent of the defect. Density functional theory calculations suggest that the defect is a rotational grain boundary made up of five- and seven-membered carbon rings. The observed defect is the smallest member of a family of rotational grain boundaries characterized by two integers, (m,n), which correspond to rotations of the hexagonal lattice within the core of the defect by (n/m)x(60 degrees) with respect to the outside lattice. Simulated STM topographs of the (2,1) rotational defect are in agreement with experiment.
Cockayne, E.
, Rutter, G.
, Guisinger, N.
, Crain, J.
, Stroscio, J.
and , P.
(2011),
Rotational Grain Boundaries in Graphene, Physical Review B, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=906586
(Accessed October 8, 2025)