Skip to main content

NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.

Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.

U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

A Risk-Uncertainty Formula Accounting for Uncertainties of Failure Probability and Consequence in a Nuclear Powerplant

Published

Author(s)

Jeffrey T. Fong, Stephen R. Gosselin, Pedro V. Marcal, James J. Filliben, Nathanael A. Heckert, Robert E. Chapman

Abstract

This paper is a continuation of a recent ASME Conference paper entitled "Design of a Python-Based Plug-in for Bench-marking Probabilistic Fracture Mechanics Computer Codes with Failure Event Data" (PVP2009-77974). In that paper, which was co-authored by Fong, deWit, Marcal, Filliben, Heckert, and Gosselin, we designed a probability-uncertainty plug-in to automate the estimation of leakage probability with uncertainty bounds due to variability in a large number of factors. The estimation algorithm was based on a two-level full or fractional factorial design of experiments such that the total number of simulations will be small as compared to a Monte-Carlo method. This feature is attractive if the simulations were based on finite element analysis with a large number of nodes and elements. In this paper, we go one step further to derive a risk-uncertainty formula by computing separately the probability-uncertainty and the consequence-uncertainty of a given failure event, and then using the classical theory of error propagation to compute the risk-uncertainty within the domain of validity of that theory. The estimation of the consequence-uncertainty is accomplished by using a public-domain software package entitled "Cost-Effectiveness Tool for Capital Asset Protection, version 4.0, 2008" (http://www.bfrl.nist.gov/oae/ or NIST Report NISTIR-7524), and is more fully described in a companion paper entitled "An Economics-based Intelligence (EI) Tool for Pressure Vessels & Piping (PVP) Failure Consequence Estimation," (PVP2010-25226, Session MF-23.4 of this conference). A numerical example of an application of the risk-uncertainty formula using a 16-year historical database of probability and consequence of main steam and hot reheat piping systems is presented. Implication of this risk-uncertainty estimation tool to the design of a risk-informed in-service inspection program is discussed.
Proceedings Title
Proceedings of the ASME Pressure Vessels and Piping Conference
Conference Dates
July 18-22, 2010
Conference Location
Bellevue, WA

Keywords

ASME B&PV Code, error propagation, failure consequence, failure probability, nuclear power plant, probabilistic risk assessment, risk uncertainty formula

Citation

Fong, J. , R., S. , Marcal, P. , Filliben, J. , Heckert, N. and Chapman, R. (2010), A Risk-Uncertainty Formula Accounting for Uncertainties of Failure Probability and Consequence in a Nuclear Powerplant, Proceedings of the ASME Pressure Vessels and Piping Conference, Bellevue, WA, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=905670 (Accessed October 11, 2025)

Issues

If you have any questions about this publication or are having problems accessing it, please contact [email protected].

Created July 20, 2010, Updated February 19, 2017
Was this page helpful?