NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Marat Andreev, David Nicholson, Anthony Kotula, Jonathan D. Moore, Jaap Den Doelder, Gregory C. Rutledge
Abstract
Polymer crystallization occurs in many plastic manufacturing processes, from injection molding to film blowing. Linear low-density polyethylene (LLDPE) is one of the most commonly processed polymers, wherein the type and extent of short chain branching (SCB) may be varied to influence crystallization. In this work, we report simultaneous measurements of the rheology and Raman spectra, using a Rheo-Raman microscope, for two industrial-grade LLDPEs undergoing crystallization. These polymers are characterized by broad polydispersity, short chain branching and the presence of polymer chain entanglements. The rheological behavior of these entangled LLDPE melts is then modeled as a function of crystallinity using a slip-link model. The partially crystallized melt is represented by a blend of linear chains with either free or crosslinked ends, wherein the crosslinks represent attachment to growing crystallites, and a modulus shift factor that increases with degree of crystallinity. In contrast to our previous application of the slip-link model to isotactic polypropylene (IPP), in which the introduction of only bridging segments, with crosslinks at both ends, was sufficient to describe the available data, for these LLPDEs we find it necessary to introduce dangling segments, with crosslinks at only one end. The model captures quantitatively the evolution of viscosity and elasticity with crystallization over the whole range of frequencies in the linear regime for two LLPDE grades.
Andreev, M.
, Nicholson, D.
, Kotula, A.
, Moore, J.
, Den Doelder, J.
and Rutledge, G.
(2020),
Rheology of Crystallizing LLDPE, Journal of Rheology, [online], https://doi.org/10.1122/8.0000110, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=930260
(Accessed October 11, 2025)