NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Reference Values of the Dielectric Constant of Natural Gas Components Determined with a Cross Capacitor
Published
Author(s)
Michael R. Moldover, T J. Buckley
Abstract
We used a novel toroidal cross capacitor to measure accurately the dielectric polarizability e(p) (i.e., the dielectric constant) of helium, argon, nitrogen, methane, and carbon dioxide at T = 50 degrees C. The data extend up to 7 MPa (5 MPa for CO2) and may be useful for calibrating on-line, capacitance-based systems that are designed to measure the heating value of natural gas. The uncertainties of e, and p are 6 and (3.0 10-5 p + 84 Pa), respectively. We used the properties of helium calculated ab initio from quantum mechanics to verify that the cross capacitor deformed in a predictable manner under hydrostatic (gas) pressure. Thus, we avoided a common cause of systematic errors in measuring the dielectric constant of gases.
Moldover, M.
and Buckley, T.
(2001),
Reference Values of the Dielectric Constant of Natural Gas Components Determined with a Cross Capacitor, International Journal of Thermophysics
(Accessed October 10, 2025)