Skip to main content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Reevaluation of Neutron Flux Characterization Parameters for NIST RT-2 Facility



Dagistan Sahin, Vladimir Radulovic, Richard M. Lindstrom, Andrej Trkov


It has been difficult to characterize the thermal to epithermal neutron flux ratio (f) and the measure of the nonideal epithermal neutron flux distribution (α) for the RT-2 pneumatic rabbit facility at the NIST National Bureau of Standards Reactor (NBSR). In a previous paper, only cadmium-covered irradiations yielded physically reasonable parameters. New measurements were performed using chromium, manganese, cobalt, zinc, zirconium, molybdenum, antimony, gadolinium, lutetium, and gold. The neutron temperature (T_n) in RT-2 measured using bare lutetium and gold foils gave unphysical values. The bare foil methods for measuring f and α gave inconsistent results. The underlying reasons are demonstrated via MCNP simulation results for cumulative reaction rates of selected isotopes. To determine expected intervals for f, α and T, parametric methods were explored. Measured reaction rate probability per target atom (R_p) values for the listed elements were fitted to a modified Westcott curve using an iterative least-squares method to verify consistency of measurements and nuclear data. An advanced parametric approach using a detailed MCNP model of the NBSR was used to calculate neutron flux characterization parameters.
Journal of Radioanalytical Chemistry


Neutron Activation Analysis (NAA), k0 method, neutron flux characterization, neutron temperature, Westcott formalism
Created December 31, 2014, Updated January 27, 2020