NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Rapid-Heating of Ionic Energetic Materials using a Micro-Differential Scanning Device
Published
Author(s)
Nicholas W. Piekiel, Richard E. Cavicchi, Michael R. Zachariah
Abstract
We employ a microcalorimeter device to study the thermal decomposition of organic energetic materials at very high heating rates. The compact size of this device enables rapid heating rates and sensitive detection of thermal loads from very small samples. Calibration for the device was done by heating 3 samples with known thermal properties, Sn, KNO3, and KClO4 at the desired heating rates to determine the temperature profile for each rate. The samples: 5-amino-1H-tetrazole, 5-amino-1-methyl-1H-tetrazolium dinitramide, 1,5-diamino-4-methyl-1H-tetrazolium dinitramide, and 1,5-diamino-4-methyl-1H-tetrazolium azide, were all tested at four heating rates ranging from 1,300-29,000 oC/s. These heating rates are orders of magnitude greater than those used in traditional DSC experiments, and the unique thermal signatures can be compared in the different heating regimes. Comparison at high and low heating rates shows that the activation energies at these vey high heating rates are significantly lower than those observed in traditional DSC ( low heating rate) measurements.
Piekiel, N.
, Cavicchi, R.
and Zachariah, M.
(2011),
Rapid-Heating of Ionic Energetic Materials using a Micro-Differential Scanning Device, Thermochimica ACTA, [online], https://doi.org/10.1016/J.Tca.2011.04.015, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=907976
(Accessed October 9, 2025)