NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Radiation-Induced Synthesis of Poly(vinylpyrrolidone) Nanogel
Published
Author(s)
Jung-Chul An, Alia Weaver, Byungnam Kim, Aaron Barkatt, Dianne L. Poster, Wyatt N. Vreeland, Joseph Silverman, Mohamad Al-Sheikhly
Abstract
Studies of the radiation-induced synthesis of poly(vinylpyrrolidone) (PVP) nanogels, intended to provide a basis for obtaining intra-molecular cross-linked products, which are more useful in drug delivery, show that a sharp change in the controlling mechanism from inter-molecular to intra-molecular cross-linking occurs above a threshold temperature around 50 Ce55 C, even though the rate of inter-molecular cross-linking is enhanced as the temperature is raised. When aqueous solutions of PVP are irradiated, the activation energy of the decay of the PVP$ radical is observed to rise sharply above this threshold temperature. This can be attributed to the collapse of the polymer chains, which occurs at temperatures above approximately 55 C and leads to a reduction of the Rh of the irradiated polymer molecules at 77 C to (44 +/- 3) % of that of PVP molecules that were not irradiated at 20 C, as shown by the results of AFFFF measurements. The abrupt transition to a mechanism controlled by intra-molecular cross-linking is due to the thermal collapse of the polymer structure. This accounts for the observation that activation energy is higher within the temperature range above 55 C. Higher pulse repetition rates during electron irradiation also promote intra-molecular cross-linking.
An, J.
, Weaver, A.
, Kim, B.
, Barkatt, A.
, Poster, D.
, Vreeland, W.
, Silverman, J.
and Al-Sheikhly, M.
(2011),
Radiation-Induced Synthesis of Poly(vinylpyrrolidone) Nanogel, Polymer, [online], https://doi.org/10.1016/j.polymer.2011.09.056
(Accessed October 13, 2025)