NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Quantum Key Distribution System Operating at Sifted-Key Rate over 4 Mbit/s
Published
Author(s)
Xiao Tang, Lijun Ma, Alan Mink, Anastase Nakassis, Hai Xu, Barry J. Hershman, Joshua Bienfang, David H. Su, Ronald Boisvert, Charles W. Clark, Carl J. Williams
Abstract
A complete fiber-based polarization encoding quantum key distribution (QKD) system based on the BB84 protocol has been developed at National Institute of Standard and Technology (NIST). The system can be operated at a sifted key rate of more than 4 Mbit/s over optical fiber of length 1 km and mean photon number 0.1. The quantum channel uses 850 nm photons from attenuated high speed VCSELs and the classical channel uses 1550 nm light from normal commercial coarse wavelength division multiplexing devices. Sifted-key rates and quantum error rates at different transmission rates are measured as a function of distance (fiber length). A polarization auto-compensation module has been developed and utilized to recover the polarization state and to compensate for temporal drift. An automatic timing alignment device has also been developed to quickly handle the initial configuration of quantum channels so that detection events fall into the correct timing window. These automated functions make the system more practical for integration into existing optical local area networks.
Tang, X.
, Ma, L.
, Mink, A.
, Nakassis, A.
, Xu, H.
, Hershman, B.
, Bienfang, J.
, Su, D.
, Boisvert, R.
, Clark, C.
and Williams, C.
(2006),
Quantum Key Distribution System Operating at Sifted-Key Rate over 4 Mbit/s, SPIE Defense and Security Conference, , USA, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=150653
(Accessed October 7, 2025)