Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Quantitative Mapping of Stress Heterogeneity in Polycrystalline Alumina using Hyperspectral Fluorescence Microscopy

Published

Author(s)

Grant A. Myers, Chris A. Michaels, Robert F. Cook

Abstract

The microstructurally-induced heterogeneous stress fields arising in a series of Cr-doped polycrystalline alumina materials are mapped with sub-micrometer sub-grain size resolution using fluorescence microscopy. Analysis of the hyperspectral data sets generated during imaging enabled both the amplitude and position of the characteristic Cr R1 fluorescence peak to be determined at every pixel in an image. The peak amplitude information was used to segment the images into individual grains and grain boundary regions. The peak position information, in conjunction with measurements on single-crystal controls, was used to quantify overall stress distributions in the materials and provide stress scales for maps. The combined information enabled spatial variations in the stress fields in crystallographic axes to be mapped and compared directly with microstructural features such as grains and grain boundaries. The mean c-axis stresses in these materials were approximately 200 MPa with stress distribution widths of about 70 MPa. Greatest variations in stress were observed at grain junctions; no variation in grain stress with grain size was observed.
Citation
ACTA Materialia
Volume
106

Keywords

Fluorescence, Stress and strain, Alumina (a-Al2O3), Mapping, Image analysis

Citation

Myers, G. , Michaels, C. and Cook, R. (2016), Quantitative Mapping of Stress Heterogeneity in Polycrystalline Alumina using Hyperspectral Fluorescence Microscopy, ACTA Materialia, [online], https://doi.org/10.1016/j.actamat.2016.01.020, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=919684 (Accessed March 28, 2024)
Created January 14, 2016, Updated October 12, 2021